

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 1 of 75

The Azure Data Engineering & Analytics Casebook
Contents
Introduction.. 2

Case Study Navigator ... 4

Part 1: Foundations of Scalable Cloud Data Engineering ... 8

Case Study F1: Optimizing Data Ingestion at OmniLogistics Inc. .. 9

Case Study F2: Harmonizing Clinical & Real-World Data at FusionPharma Analytics .. 13

Case Study F3: Advanced Data Warehouse Modernization for FinanceCo Global .. 17

Case Study F4: Building a IoT Platform for AeroSense ... 20

Case Study F5: Near-Zero Downtime Migration: On-Prem SQL Server to Azure SQL Managed Instance 22

Part 2: Elite PySpark Engineering & Governance .. 25

Case Study P1: Comparing Online vs. In-Store Product Performance .. 26

Case Study P2: Building a Scalable Pipeline to Automate GDPR User Data Erasure Requests 29

Case Study P3: Engineering a 'Trending Now' Chart for a Podcast Platform ... 33

Case Study P4: Urban Mobility Flow Optimization ... 36

Part 3: End-to-End Machine Learning Solutions with PySpark .. 39

Case Study M1: AI-Powered Demand Forecasting for Supply Chain Optimization ... 40

Case Study M2: Automating Customer Service Ticket Classification and Routing .. 43

Case Study M3: Predicting Personality Traits for High-Performance Team Building ... 46

Part 4: From Analytics to Architecture: Advanced SQL & Business Intelligence ... 49

Case Study S1: Architecting the Operational Database for Aura Music Festival ... 50

Case Study S2: Engineering a Data-Driven Future at CityHop ... 53

Case Study S3: Customer Segmentation and Network Analysis ... 56

Case Study S4: Architecting an Enterprise Carbon Footprint & ESG Dashboard .. 59

Appendix A: A Framework for Architectural Problem-Solving .. 61

Appendix B: Glossary of Terms, Metrics & Concepts ... 64

Appendix C: Concept Progression Map .. 68

Appendix D: Common Pitfalls & Anti-Patterns .. 70

Appendix E: About This Portfolio .. 73

Evolution of This Casebook ... 74

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 2 of 75

Introduction
In today's competitive landscape, data is the undisputed engine of innovation and strategic advantage. Yet,

the ability to transform vast information into actionable intelligence is a complex journey that demands a

blend of architectural vision and engineering precision.

This casebook showcases the work of a full-stack data professional who specializes in architecting and

executing end-to-end data strategies that transform business challenges into high-value assets. It's a

curated collection of professional cases demonstrating deep, hands-on expertise across the entire data

lifecycle within the Microsoft Azure ecosystem. Ultimately, this collection demonstrates a rare, hybrid skill

set capable of driving business value at every stage-from infrastructure, to insight, to predictive intelligence.

The Narrative Journey

The casebook is structured as a deliberate narrative in four parts, showcasing a methodical progression of

capability.

• Part 1: Foundations of Scalable Cloud Data Engineering establishes the non-negotiable bedrock

of any modern data initiative: the ability to architect robust, automated, and governed data

platforms.

• Part 2: Elite PySpark Engineering & Governance elevates the focus to tackling ambiguous

business problems with programmatic, first-principles solutions and mission-critical governance

frameworks.

• Part 3: End-to-End Machine Learning Solutions showcases the pinnacle of data maturity, proving

the capacity to transform raw datasets into the predictive intelligence that drives direct business

value.

• Part 4: From Analytics to Architecture demonstrates the critical 'last mile' of the data value chain,

translating complex backend systems into strategic insights through advanced SQL and business

intelligence.

How to Engage with This Casebook

The cases within this portfolio are presented not as historical reports, but as active challenges. Each one is

designed to place you, the reader, directly into the role of the lead professional tasked with solving a

complex, high-stakes problem.

Your objective is not to find a single "correct" answer, as one rarely exists in complex engineering projects.

Instead, your challenge is to architect a robust, efficient, and defensible solution from the information

provided , making design choices based on key trade-offs like cost, performance, and security.

Prerequisite Skills

To gain the maximum benefit from these case studies, you should have a foundational understanding of the

following areas:

• Core Data Concepts: Familiarity with data warehousing, ETL vs. ELT, and data modeling (e.g., star

schemas).

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 3 of 75

• SQL: Intermediate proficiency in SQL, including joins, aggregations, and window functions.

• Python & PySpark: Basic knowledge of Python syntax and data structures. Prior experience with

PySpark DataFrames is beneficial but not required.

• Azure Fundamentals: A general awareness of the Microsoft Azure ecosystem and experience

navigating the Azure portal.

Technology Stack Overview

The solutions in this casebook leverage a modern, enterprise-grade technology stack.

Category Key Technologies Application / Proficiency

Cloud & Data Platform
Microsoft Azure, Azure Databricks, ADF, ADLS

Gen2, Event Hubs, Azure Key Vault

Architecting and deploying enterprise-grade, integrated

data solutions on the Azure cloud platform.

Data Processing &

Engineering

PySpark, SQL, Delta Lake, Unity Catalog,

Structured Streaming, Databricks Lakehouse

Platform, ADF Mapping Data Flows

Expert-level development for large-scale ETL, performance

tuning, and building reliable, governed data models.

DevOps & Automation CI/CD, GitHub / Git, GitHub Actions

Implementing full CI/CD pipelines to automate testing and

deployment, ensuring code reliability and operational

excellence.

Machine Learning & AI
PySpark MLlib, NLP, Time-Series Forecasting,

Jupyter Notebooks

Developing and deploying end-to-end machine learning

models to solve business problems in forecasting and

classification.

Business Intelligence Power BI
Connecting curated data layers to BI tools, enabling self-

service analytics and executive reporting.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 4 of 75

Case Study Navigator
Use this navigator to explore the challenges that are most relevant to your interests. You can scan the

master table for a complete overview or use the indexes to find cases by a specific business domain,

technology, or architectural pattern.

Challenge Summary Table

This summary provides a comprehensive overview of all fifteen case studies in this portfolio. Use it to

quickly scan and navigate to the challenges that are most relevant to your interests, organized by domain,

the core problem solved, and the key technologies applied.

Case Domain Problem Type / Core Challenge Key Technologies Complexity

F1 Logistics / Supply Chain
Incremental Data Ingestion & CI/CD

Automation

Azure Data Factory, ADLS Gen2,

GitHub Actions
High

F2 Pharma / Healthcare
Harmonizing Diverse & Complex Data Formats

(CSV, JSON, XML)

ADF Mapping Data Flows, Self-

Hosted IR
High

F3
Finance / Data

Warehousing

Legacy Data Warehouse Modernization &

Governance

Azure Databricks, Delta Lake, Unity

Catalog
Very High

F4
IoT / Predictive

Maintenance

Architecting a Scalable, Near Real-Time

Streaming Platform

Databricks Structured Streaming,

Auto Loader
High

F5
E-commerce / Data

Migration
Near-Zero Downtime DB Migration Azure DMS, DMA, SQL MI High

P1 Retail / E-commerce
Harmonizing Disparate Online vs. In-Store Sales

Data

PySpark (Schema Harmonization,

Pivot)
Medium

P2
Data Governance /

Social Media

Automating GDPR "Right to be Forgotten" Data

Erasure Requests

PySpark (Complex Joins,

Anonymization)
High

P3 Digital Media / Podcasts
Engineering a Custom "Trending Now" Ranking

Algorithm

PySpark (Advanced Window

Functions)
High

P4
Urban Planning /

Transportation

Simulating Network Disruptions via Graph

Algorithm Emulation (BFS)

PySpark (Skew Handling, UDFs, Graph

Emulation)
Very High

M1 Supply Chain / Retail
AI-Powered Demand Forecasting to Optimize

Inventory

PySpark MLlib (Time-Series Feature

Engineering)
High

M2 Customer Service / NLP
Automating Customer Service Ticket

Classification & Routing

PySpark MLlib (NLP Pipeline,

Classification)
High

M3 HR / NLP
Predicting "Big Five" Personality Traits from

Written Text

PySpark MLlib (Advanced NLP, Multi-

Output Regression)
Very High

S1
Event Management / DB

Architecture

Architecting an Operational Database from

Scratch with Integrity Constraints

SQL (DDL, Stored Procedures,

Triggers)
Medium

S2 Ride-Sharing / Analytics
Answering 22 Complex Business Questions with

Advanced SQL

SQL (Advanced Window Functions,

CTEs)
Medium

S3
E-commerce / Customer

Analytics

Advanced Customer Segmentation (RFM) &

Referral Network Analysis
SQL (Recursive CTEs, PIVOT, Indexing) High

S4
ESG / Business

Intelligence

Architecting an Enterprise ESG Dashboard from

Complex Sources (incl. PDFs)

Power BI, DAX, Power Query, AI

Builder
High

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 5 of 75

Challenge Index

Index by Business Domain

To explore challenges within a specific industry, use this index to navigate the most relevant case studies.

Business Domain
Relevant Case

Studies
Core Focus

Logistics & Supply Chain F1, M1, S4 Data Ingestion, Demand Forecasting, ESG Dashboarding

Retail & E-commerce P1, S3, M1 Omnichannel Analytics, Customer Segmentation (RFM), Demand Forecasting

Finance & Data

Warehousing
F3 Legacy Data Warehouse Modernization, Governance

Pharma & Healthcare F2 Harmonizing Complex Clinical & Real-World Data

IoT & Real-Time Streaming F4 Building a Scalable Platform for High-Velocity Telemetry Data

Data Governance P2, F3 Automating GDPR Erasure Requests, Centralized Lakehouse Governance

Digital Media P3 Engineering a "Trending Now" Algorithm for Podcasts

Transportation & Analytics S2, P4
Answering Complex Business Questions for a Ride-Sharing App, Urban

Mobility Simulation

HR & NLP M3, M2
Predicting Personality Traits from Text, Automating Customer Service Ticket

Classification

Data Migration F5 Near-Zero Downtime Database Migration

Index by Key Technology

To see the application of a specific tool or framework, use this index to find all case studies that feature a

key technology.

Key Technology
Relevant Case

Studies
Application

Azure Databricks & PySpark
F3, F4, P1, P2, P3, P4,

M1, M2, M3

Data Warehouse Modernization, Streaming, ETL, Governance,

Algorithms, ML

Advanced SQL S1, S2, S3
Database Architecture, Complex Analytical Querying, Recursive CTEs &

PIVOT

Azure Data Factory (ADF) F1, F2 Incremental Ingestion Frameworks, Harmonizing Complex File Formats

Power BI & DAX S4 Enterprise ESG Dashboarding, What-If Parameter Modeling

CI/CD & DevOps F1, F3 Automating ADF & Databricks Deployments with GitHub Actions

Unity Catalog & Governance F3, F4 Fine-Grained Access Control, Streaming Governance

Machine Learning & NLP M1, M2, M3 Time-Series Forecasting, Text Classification, Multi-Output Regression

Azure Database Migration Service

(DMS)
F5 Online Database Migration

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 6 of 75

Index by Pattern & Concept

Use this index to find and compare how recurring, high-value patterns are implemented across different

business scenarios.

• Incremental Data Ingestion

o Focus: Building an efficient, trigger-based framework to process only new or changed files.

o Primary Case: F1 (OmniLogistics Inc.)

• CI/CD & DevOps Automation

o Focus: Automating the deployment of data pipelines to ensure consistency and reliability.

o Cases: F1 (for Azure Data Factory), F3 (for Azure Databricks).

• Data Lakehouse Architecture (Bronze/Silver/Gold)

o Focus: Migrating from a legacy system to a modern data lakehouse with refined data layers.

o Primary Case: F3 (FinanceCo Global).

• Streaming & Real-Time Processing

o Focus: Architecting a platform to handle high-velocity, near real-time data from IoT devices.

o Primary Case: F4 (AeroSense).

• Database Migration (Near-Zero Downtime)

o Focus: Planning and executing the complex online migration of a live, on-premise

transactional database to Azure.

o Primary Case: F5 (StyleSpire).

• Programmatic Governance (e.g., GDPR)

o Focus: Using PySpark to build a precise, auditable pipeline for handling sensitive data

requests.

o Primary Case: P2 (GDPR Erasure Requests).

• Advanced Performance Tuning

o Focus: Applying techniques like Z-Ordering and handling data skew (salting) to optimize

large-scale jobs.

o Cases: F3 (Z-Ordering), P4 (Skew Handling).

• Complex Algorithmic Logic (Non-ML)

o Focus: Using advanced PySpark (window functions, graph emulation) to solve complex

business problems.

o Cases: P3 ("Trending Now" Algorithm), P4 (Urban Mobility Simulation).

• Time-Series Forecasting

o Focus: Using PySpark MLlib to build a predictive model based on time-series features.

o Primary Case: M1 (AI-Powered Demand Forecasting).

• Natural Language Processing (NLP)

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 7 of 75

o Focus: Building pipelines to classify and analyze unstructured text data.

o Cases: M2 (Ticket Classification), M3 (Personality Trait Prediction).

• Advanced SQL (Recursive CTEs, PIVOT)

o Focus: Using advanced SQL features for complex segmentation, network analysis, and

reporting.

o Primary Case: S3 (Customer Segmentation).

• End-to-End Business Intelligence

o Focus: Architecting a complete BI solution, from complex data integration (including PDFs)

to a final, board-level dashboard.

o Primary Case: S4 (Enterprise ESG Dashboard).

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 8 of 75

Part 1: Foundations of Scalable Cloud Data Engineering
This section demonstrates a comprehensive command of modern data platform engineering, architecting,

and automation using Microsoft Azure. The case studies within prove an ability to tackle the entire lifecycle

of enterprise data, from ingestion and processing to warehousing and real-time streaming, establishing the

foundational skills necessary to power any data-driven organization.

The journey begins with

Case Study F1, which solves a critical challenge in logistics data ingestion by designing a robust,

incremental loading framework in Azure Data Factory. This is followed by

Case Study F2, which addresses the complex reality of modern data ecosystems by harmonizing a

cacophony of disparate and difficult data formats. The focus then elevates to large-scale data

modernization and governance in

Case Study F3, which details the strategic migration of a legacy financial data warehouse to a state-of-the-

art Lakehouse solution on Azure Databricks. Finally,

Case Study F4 proves a capacity for handling the future of data-high-velocity, real-time streams-by

building a scalable IoT platform for predictive maintenance.

Case Study F5, which tackles the challenge of cloud adoption: the high-stakes, near-zero downtime

migration of a live operational database, proving the ability to move core systems to Azure without

disrupting business.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 9 of 75

Case Study F1: Optimizing Data Ingestion at OmniLogistics Inc.

Company Background

OmniLogistics Inc. is a rapidly expanding global logistics and supply chain management company. With

operations spanning five continents, OmniLogistics prides itself on its vast network of partners, diverse

transportation modes (air, sea, road), and sophisticated tracking capabilities. The company's core business

relies heavily on the timely and accurate flow of operational data, including shipment tracking updates,

inventory levels, routing manifests, and partner performance reports. This data is critical for real-time

operational decisions, predictive analytics on supply chain disruptions, client reporting, and internal

financial reconciliation.

The Current Situation

OmniLogistics receives daily data feeds from hundreds of disparate sources - ranging from individual truck

GPS units and warehouse IoT sensors to major shipping line APIs and third-party logistics (3PL) partners.

These feeds typically arrive as flat files (CSV, JSON, XML) into a designated Azure Data Lake Storage Gen2

(ADLS Gen2) container (referred to as the "raw ingestion zone").

The existing data ingestion process for these flat files is rudimentary and manual:

• A basic Azure Data Factory (ADF) pipeline, or in some cases, scheduled scripts, runs daily.

• This pipeline attempts to re-ingest all files present in the raw/daily_uploads/ folder, regardless of

whether they are new or have been previously processed.

• Pipeline changes are developed in one environment and then manually recreated in test and

production, leading to inconsistencies.

• Upon successful ingestion, the files remain in the source folder, leading to continuous growth and

clutter.

• Error handling is minimal, often resulting in entire pipeline failures if a single file is malformed or

missing, requiring manual restarts and extensive debugging.

• There's no systematic way to track which specific files were processed in a given run, making

auditing and data lineage challenging.

• Compliance teams are increasingly concerned about the lack of an immutable archive for original

source files after processing.

The Challenges Faced

The current approach presents significant operational, financial, and strategic challenges for OmniLogistics:

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 10 of 75

• Escalating Cloud Costs & Resource Inefficiency: Re-processing hundreds of gigabytes (and

growing) of unchanged historical data daily leads to unnecessary consumption of compute

resources within Azure Data Factory and downstream processing engines.

• Delayed Insights & Stale Data: The long execution times of full-load pipelines delay the availability

of fresh data in OmniLogistics' analytical dashboards and reporting tools, hindering real-time

decision-making.

• Operational Overhead & Fragility: Frequent pipeline failures due to unhandled exceptions

consume significant engineering hours in manual intervention, troubleshooting, and re-running

pipelines.

• Lack of Auditability & Compliance Risk: Without a reliable log of processed files, it's difficult to

answer critical business and compliance questions, posing a risk for regulatory audits and internal

data governance.

• Storage Management & Data Lake Sprawl: The absence of an automated archival strategy for

source files leads to clutter in the raw zone and makes it harder to manage storage costs and

performance.

• Inconsistent Deployments & Lack of Version Control: The manual process of promoting ADF

pipelines from development to production is error-prone. There is no source control, making it

impossible to track changes, collaborate effectively between developers, or roll back to a stable

version if a deployment introduces a bug.

The Call to Action (Your Role)

As the newly appointed Senior Data Engineer at OmniLogistics Inc., your primary mandate is to overhaul

this critical data ingestion pipeline and establish modern DataOps practices. Your team leadership has

tasked you with designing and implementing a robust, scalable, and self-managing solution.

Your Objective

Develop an Azure Data Factory solution that addresses the challenges by:

• Implementing an incremental loading mechanism to process only newly arrived or modified files

efficiently.

• Ensuring atomic processing and archival of source files to a structured, date-based archive,

providing an immutable record.

• Incorporating comprehensive error handling and notification to gracefully manage failures at

individual file levels and alert relevant teams.

• Establishing a detailed audit logging system to track the processing status of each file, enhancing

traceability and compliance.

• Designing for resilience and reusability, minimizing manual intervention and enabling future

expansion to other data sources.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 11 of 75

• Establishing a CI/CD framework using GitHub Actions to automate the deployment of ADF pipelines

across development, test, and production environments, ensuring consistency and reliability.

Expected Solution Deliverables & Format

To demonstrate a comprehensive solution, the following deliverables and format are expected:

1. Solution Architecture Diagram

• A high-level logical and physical architecture diagram illustrating the flow of data from source ADLS

Gen2 to processed and archive zones, orchestrated by Azure Data Factory.

• A second diagram illustrating the CI/CD process, showing Git integration, GitHub Actions for build

and release, and the promotion of artifacts across environments (Dev, Test, Prod).

2. Azure Data Factory Pipeline Implementation

• Detailed Pipeline Overview: A screenshot of the complete ADF pipeline canvas showing all

activities and their logical flow.

• Key Activity Configurations: Screenshots and explanations of critical activity settings for

incremental logic, error handling, and auditing.

• Parameterization: An explanation of how Pipeline Variables, Global Parameters, and Dataset

Parameters are used for dynamic execution.

3. CI/CD Framework Implementation (GitHub)

• Git Integration: Screenshots showing how the Azure Data Factory instance is configured for source

control with GitHub.

• Workflow YAML File: The complete YAML files for the GitHub Actions workflows, including the

build workflow for validation and the multi-stage release workflow for deployment.

• Release Workflow: A diagram or YAML snippet of the multi-stage release workflow, showing jobs

for Test and Production environments, including environment protection rules for approvals.

• Parameterization Strategy: A detailed explanation of how environment-specific parameters (e.g.,

connection strings, storage account names) are managed using GitHub Environments and Secrets.

4. ADLS Gen2 Folder Structure and Naming Conventions

• An illustration of the proposed folder structure (e.g., raw/, processed/, archive/yyyy/MM/dd/,

control/, audit/).

5. Proof of Functionality (Screenshots & Explanations)

• Successful Incremental Load: Screenshots of ADF Monitor showing a successful run processing

only new files.

• "No New Files" Scenario: Screenshot of a run showing the pipeline correctly identifying that no

new files are present.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 12 of 75

• Failure Scenario & Notification: Screenshot of a pipeline failure and the corresponding

alert/notification.

• Successful CI/CD Deployment: Screenshots from GitHub Actions showing a successful workflow

run deploying a change to the production environment, with parameter overrides correctly applied.

6. Documentation Snippets

• A brief outline from a "Runbook" detailing operational steps and troubleshooting.

• A snippet from a "Design Document" explaining the incremental logic and high-water mark strategy.

• A snippet from a "Deployment Guide" explaining the CI/CD process for developers.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 13 of 75

Case Study F2: Harmonizing Clinical & Real-World Data at
FusionPharma Analytics

Company Background

FusionPharma Analytics (FPA) is a specialized research organization that partners with pharmaceutical

companies, Contract Research Organizations (CROs), and healthcare providers worldwide. FPA's mission is

to accelerate drug discovery and improve patient outcomes by ingesting, harmonizing, and analyzing

diverse clinical trial data and real-world evidence (RWE). Their analytics platform provides crucial insights for

trial design optimization, efficacy analysis, safety signal detection, and regulatory submissions.

The Current Situation

FPA receives a continuous stream of complex data from a multitude of global sources:

• Clinical Trial Data: EDC (Electronic Data Capture) systems of partner CROs provide patient data as

CSV files. These are typically delivered to FPA-managed on-premises SFTP servers.

• Patient-Reported Outcomes (PROs): Data from mobile health apps and patient diaries arrive as

JSON files via a secure cloud API.

• Electronic Health Record (EHR) Extracts: De-identified patient EHR data from collaborating

hospitals are provided as XML files, often from VNet-isolated hospital systems.

• Lab Results: Central and local lab results are delivered as fixed-width text files or complex CSVs with

varying headers.

All these files are currently landed in a centralized Azure Data Lake Storage Gen2 (ADLS Gen2) "raw_data"

zone. The existing data processing relies on a patchwork of Python scripts executed on VMs and some basic

Azure Data Factory (ADF) pipelines primarily using copy activities. Data ingestion for most sources is based

on nightly schedules, but critical adverse event reports, embedded within some data feeds, need to be

identified and processed with urgency upon arrival.

The Challenges Faced

1. Diverse & Complex File Formats: Ingesting and parsing multiple formats (CSV, JSON, XML, Fixed-

Width) with their unique structures and encoding presents a significant challenge for the current

script-based system.

2. Schema Drift & Variability: Clinical trial protocols evolve, and EHR systems differ, leading to

frequent schema drift (new columns, changed data types, altered structures) in incoming files,

causing script failures.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 14 of 75

3. Data Quality & Consistency: Data arrives with varying quality - missing values in critical fields,

incorrect data types, inconsistent use of medical coding standards (e.g., MedDRA, SNOMED CT), and

outliers that require sophisticated validation.

4. Hybrid Data Integration & Security: Securely accessing on-premises SFTP servers and VNet-

isolated hospital systems to pull data requires a robust and secure hybrid integration setup, which is

currently lacking.

5. Timeliness of Critical Data Processing: Adverse event data, crucial for patient safety monitoring, is

often delayed due to the predominantly batch-oriented processing and lack of event-driven

ingestion capabilities.

6. Scalability of Complex Transformations: Current Python scripts are not scaling effectively to

handle the increasing volume and complexity of transformations required, such as mapping diverse

medical codes to a central ontology, joining patient data across different trials/sources, and

calculating derived safety and efficacy endpoints.

7. Operational Overhead: Significant engineering effort is spent on maintaining disparate scripts,

manually handling ingestion failures due to format or schema issues, and ensuring data quality

post-processing.

The Call to Action (Your Role)

As a Senior Data Engineer at FusionPharma Analytics, you are tasked with designing and implementing a

modern, scalable, and robust data ingestion and transformation platform using Azure Data Factory, with a

strong emphasis on leveraging Mapping Data Flows for complex logic.

Your Objective

Develop an Azure Data Factory solution that addresses the challenges by:

1. Designing and implementing ADF Mapping Data Flows to ingest, parse, cleanse, validate, transform,

and harmonize the diverse data formats (CSV, JSON, XML, Fixed-Width) into a standardized,

analytics-ready format in ADLS Gen2

2. Incorporating robust schema drift handling capabilities within the Data Flows to adapt to changes

in source file structures without manual intervention.

3. Embedding comprehensive data quality rules directly within Data Flows to identify, flag, and

potentially quarantine or remediate data that does not meet predefined quality standards.

4. Setting up and configuring a Self-Hosted Integration Runtime (SHIR) for secure and efficient data

retrieval from on-premises SFTP servers.

5. Implementing a hybrid integration strategy for accessing data from VNet-isolated hospital systems.

6. Utilizing appropriate ADF Triggers - specifically, Schedule Triggers for regular batch ingestion and

Event-based Triggers for the near real-time processing of files containing critical adverse event

information.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 15 of 75

7. Performing complex transformations within Data Flows, including joining disparate datasets,

looking up and mapping medical codes, handling nested structures (from JSON/XML), deriving new

variables, and aggregating data.

Expected Solution Deliverables & Format

1. Solution Architecture Diagram:

o A high-level diagram illustrating the flow of data from all source types (on-prem SFTP, cloud

API, VNet systems, raw ADLS Gen2) through ADF (highlighting SHIR, Azure IR, Triggers, and

Data Flows) to staging, curated, and potentially quarantine ADLS Gen2 zones.

2. Azure Data Factory Pipeline Implementation:

o Pipeline Overview(s): Screenshots of ADF pipeline canvases showing orchestration for

different data sources and trigger types (e.g., one for scheduled batch, one for event-driven

processing).

o Integration Runtime Setup:

▪ Details of SHIR configuration for on-prem SFTP access.

▪ Strategy for Azure IR usage (including region and VNet integration considerations if

applicable for certain sources).

o Trigger Configurations: Screenshots and explanations for both Schedule and Event-based

trigger setups.

o Detailed Mapping Data Flow Designs (Examples): For at least two distinct data

sources/types (e.g., one for parsing and transforming XML EHR data, another for

harmonizing CSV clinical trial data with JSON PRO data). Each design should include:

▪ Source transformations for different file formats.

▪ Schema drift handling configurations.

▪ Data quality validation steps (e.g., using Assert, Conditional Split).

▪ Examples of complex transformations (joins, lookups, derived columns, aggregations).

▪ Sink configurations.

3. ADLS Gen2 Folder Structure and Naming Conventions:

o Illustrate the proposed folder structure (e.g., raw/, staging/, curated/, quarantine/, logs/).

o Explain naming conventions.

4. Proof of Functionality (Screenshots & Explanations):

o Successful ingestion and transformation run for a complex file format (e.g., XML or multi-

sheet CSV).

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 16 of 75

o Demonstration of schema drift being handled by a Data Flow.

o Example of data quality rules identifying and routing bad data.

o Successful data retrieval using SHIR from a (simulated) on-prem source.

o An Event-based trigger successfully launching a pipeline upon file arrival.

5. Documentation Snippets:

o A brief outline from a "Data Transformation Rules" document for one of the Data Flows.

o A snippet explaining the SHIR setup and security considerations.

o Notes on the trigger logic for time-sensitive data

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 17 of 75

Case Study F3: Advanced Data Warehouse Modernization for
FinanceCo Global

Company Background

FinanceCo Global is a well-established financial services firm that relied on an aging on-premises data

warehouse for its critical financial reporting, regulatory compliance, and business intelligence. This

traditional system struggled with scalability, performance for complex analytical queries, and the integration

of new data sources, while incurring significant operational costs.

The Current Situation

The existing data warehouse runs on an aging on-premises SQL Server instance. Nightly ETL processes are

managed by a complex web of SSIS packages, and Databricks notebooks for ad-hoc analysis were deployed

manually. This legacy architecture presented several critical problems:

• Scalability & Performance Bottlenecks: Query execution times for large analytical reports were

unacceptably long, especially during month-end closing.

• High Maintenance Costs: The firm faced escalating costs for hardware maintenance, server

licensing, and specialized staff.

• Manual & Risky Deployments: The manual promotion of Databricks notebooks was slow, error-

prone, and lacked version control, often leading to production failures that caused significant

disruption.

• Inflexible ETL Development: Modifying the monolithic SSIS packages was a slow and error-prone

process, hindering the data team's ability to respond to new business requirements.

• Fragmented Governance: Data access controls were inconsistently applied, and there was no

centralized data catalog or lineage tracking, posing a significant risk for regulatory compliance and

making it difficult to handle sensitive PII data securely.

The Call to Action (Your Role)

As the Lead Data Platform Engineer, your objective was to architect and implement a modern data

lakehouse solution on Azure. The new platform needed to replace the legacy system, delivering superior

performance, scalability, and robust data modeling capabilities while adhering to strict financial regulations

and security standards. A key requirement was to automate the development lifecycle and establish strong,

centralized governance.

Your Objective

Design and build a state-of-the-art financial data warehouse on Azure Databricks that addresses the

limitations of the legacy system by:

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 18 of 75

• Orchestrating the migration of existing data models and ETL processes to a scalable ELT paradigm

on the Databricks Lakehouse Platform.

• Implementing sophisticated data modeling techniques, including Slowly Changing Dimensions, to

accurately capture business history.

• Applying advanced performance optimization strategies to ensure millisecond-level query responses

for financial analytics.

• Establishing a robust governance and security fabric using Unity Catalog for fine-grained access

control and data lineage.

• Implementing a full CI/CD pipeline for Databricks using GitHub Actions to automate testing and

deployment, ensuring code reliability.

Expected Solution Deliverables & Format

To demonstrate a comprehensive solution, the following deliverables and format are expected:

1. Solution Architecture Diagram:

• A high-level diagram illustrating the end-to-end architecture: from on-premises sources

(orchestrated by Azure Data Factory), through the Azure Data Lakehouse (Bronze/Silver/Gold layers),

with Databricks as the central processing engine, and finally to consumption layers like Power BI.

• A second diagram detailing the CI/CD workflow, showing the integration between GitHub, GitHub

Actions, and multiple Databricks workspaces (Dev, Test, Prod).

2. Azure Databricks Notebook & Code Examples:

• Data Modeling Snippets: Code examples demonstrating the implementation of SCD Type 1 and

SCD Type 2 dimensions using Delta Lake's MERGE command.

• Performance Optimization Snippets: Examples showing the application of OPTIMIZE with

ZORDER, caching strategies, and broadcast joins.

• Data Quality Snippets: An example of a notebook implementing data validation rules and

quarantining bad records before they reach the curated layers.

3. CI/CD Pipeline Implementation (GitHub Actions):

• Workflow YAML Files: The complete YAML files for the GitHub Actions workflows, including a

build-and-test workflow that runs on pull requests and a deploy workflow that runs on merges to

the main branch.

• Unit Test Examples: Sample unit tests for PySpark transformations using pytest to demonstrate

test-driven development.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 19 of 75

4. Governance and Security Plan (Unity Catalog):

• Access Control Snippets: Example SQL commands for implementing row-level and column-level

security on sensitive financial data using Unity Catalog.

• Lineage Visualization: A screenshot from the Unity Catalog UI showing automatically captured data

lineage for a critical financial report.

• A document outlining the Role-Based Access Control (RBAC) model for different user personas (data

engineers, analysts).

• An explanation of how Azure Key Vault-backed secret scopes are configured and used to handle

credentials securely.

5. Proof of Functionality (Screenshots & Explanations):

• Screenshots from GitHub Actions showing a successful CI/CD run, including passed tests and

automated deployment to a production workspace.

• Query execution plans or performance metrics from Databricks showing the impact of optimizations

like Z-Ordering.

• Screenshots demonstrating fine-grained access control in action (e.g., a finance analyst only seeing

relevant departments, or a specific user only accessing masked columns).

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 20 of 75

Case Study F4: Building a IoT Platform for AeroSense

Company Background

AeroSense Technologies is a leader in industrial IoT solutions, providing predictive maintenance and

operational insights for heavy machinery. Their devices generate high-volume, real-time telemetry data

(sensor readings, operational status, alerts) that needs to be ingested, processed, and analyzed with

minimal latency to enable immediate anomaly detection and trigger timely maintenance actions.

The Current Situation

AeroSense currently ingests IoT telemetry data into Azure Event Hubs. A basic Azure Function then pushes

this data into ADLS Gen2 as raw JSON files. Subsequent batch processes run hourly using Python scripts on

Azure VMs to transform and aggregate this data. This batch-oriented approach leads to:

• Delayed Insights: The hourly processing window means critical anomalies are detected hours after

they occur, impacting the effectiveness of predictive maintenance.

• Scalability Limitations: The current VM-based processing struggles to keep up with increasing data

volumes and velocity from a growing fleet of devices.

• Data Quality Issues: Lack of proper schema enforcement and data validation at the ingestion layer

leads to inconsistent data in the downstream analytical stores.

• Spiraling Costs: The infrastructure consists of over-provisioned, static VMs, leading to runaway

cloud costs that are not proportional to the actual workload.

• Lack of Governance: There is no centralized data catalog or consistent security model, making it

difficult to manage data access for analytics.

The Call to Action (Your Role)

As the Senior Data Engineer, your objective is to design and implement a scalable, near real-time data

lakehouse solution using Azure Databricks. The platform must process high-volume IoT telemetry data

efficiently while being cost-effective and providing a governed foundation for advanced analytics.

Your Objective

Design and implement an end-to-end streaming data platform on Azure Databricks that will serve as the

backbone of AeroSense's predictive maintenance capabilities by:

• Building a scalable ingestion framework for real-time streaming data using Structured Streaming

and Auto Loader.

• Applying advanced performance optimization and cost management strategies to handle massive

data volumes efficiently.

• Establishing a robust, centralized governance fabric using Unity Catalog to protect sensitive data

and enable self-service analytics.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 21 of 75

• Implementing sophisticated data models and transformations on the continuous stream of data.

Expected Solution Deliverables & Format

1. Solution Architecture Diagram:

• A high-level diagram illustrating the flow from IoT Devices -> Azure Event Hubs -> Azure Databricks

(Structured Streaming for Bronze, Silver, Gold layers) -> Downstream consumption (e.g., Power BI).

• The diagram should explicitly show Unity Catalog as the central governance layer and highlight the

use of autoscaling clusters with spot instances.

2. Azure Databricks Notebook Implementations:

• Bronze Layer Notebook: Code snippets demonstrating ingestion from Event Hubs into a Unity

Catalog-managed Delta table using Structured Streaming and Auto Loader, highlighting schema

inference.

• Silver Layer Notebook: Code snippets demonstrating cleansing, normalization, and basic

transformations on the streaming data.

• Gold Layer Notebook: Code snippets demonstrating complex aggregations (e.g., windowed

aggregations over sensor data), joins with reference data, and writing to a curated Gold table for

analytics.

3. Performance & Cost Optimization Strategy:

• Cluster Configuration: A JSON snippet or screenshot of a cluster policy that enforces autoscaling

and the use of Spot Instances for all streaming jobs.

• Optimization Snippets: Examples showing the application of OPTIMIZE for file size tuning and a

discussion on how potential data skew from certain device types would be handled.

4. Governance Plan:

• Unity Catalog Snippets: Example SQL commands for granting and revoking table permissions

within Unity Catalog for the IoT data.

• A document outlining the access control model for different user personas.

5. Proof of Functionality (Screenshots & Explanations):

• Screenshots of Databricks notebooks running in streaming mode, showing near real-time data flow.

• A screenshot from the Azure Portal or Databricks UI demonstrating the cost savings achieved

through the use of spot instances.

• Demonstration of schema evolution being handled gracefully by Auto Loader.

• Screenshots of the Unity Catalog UI showing registered tables, their metadata, and automatically

captured data lineage for the IoT data stream.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 22 of 75

Case Study F5: Near-Zero Downtime Migration: On-Prem SQL
Server to Azure SQL Managed Instance

Company Background

"StyleSpire" is a high-growth, global online fashion retailer known for its dynamic catalog and 24/7

customer engagement. The company's entire business-from its customer-facing website and mobile app to

its backend inventory management and order fulfillment systems-is powered by a large, monolithic SQL

Server database hosted in a private, on-premise data center. Continuous uptime and fast database

performance are critical to revenue and customer satisfaction, especially during peak shopping seasons.

The Current Situation

StyleSpire's core operations run on a 15 TB on-premise SQL Server 2016 Enterprise Edition database. This

system processes thousands of transactions per minute, including new orders, customer sign-ups, inventory

updates, and payment processing. The database runs on physical hardware that is approaching its end-of-

life. The existing infrastructure is managed by a small, overloaded IT team responsible for everything from

hardware maintenance and patching to manual backups and disaster recovery drills.

The Challenges Faced

The legacy on-premise setup has become a significant liability, presenting several critical business

challenges:

• Spiraling Operational Costs: The company faces escalating costs related to data center hosting,

power, cooling, and expensive per-core SQL Server Enterprise licensing renewals.

• Scalability Bottlenecks: The physical hardware cannot scale to meet the demand of traffic spikes

during major sales events like Black Friday. This leads to website slowdowns, cart abandonment, and

lost revenue. Scaling up requires a lengthy and capital-intensive hardware procurement process.

• High Risk of Downtime: The aging hardware poses a constant risk of failure. The existing disaster

recovery plan involves a slow, manual failover process that could result in hours of downtime and

significant data loss, which is unacceptable for a 24/7 e-commerce business.

• Lack of Business Agility: The infrastructure team spends the majority of its time on routine

maintenance, leaving little room for innovation or supporting new business initiatives that require

modern data capabilities.

The Call to Action (Your Role)

As the Lead Cloud Migration Engineer, you have been tasked by senior leadership with planning and

executing the complete migration of this mission-critical database from the on-premise data center to

Microsoft Azure. Your primary mandate is to ensure a seamless transition with virtually no impact on live

business operations.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 23 of 75

Your Objective

Design and implement an end-to-end migration strategy that addresses the limitations of the current

system by:

• Migrating the 15 TB on-premise SQL Server database to Azure SQL Managed Instance to leverage

a fully managed, scalable, and resilient PaaS environment.

• Executing the migration with near-zero downtime using an online replication strategy, ensuring the

e-commerce platform remains operational throughout the process.

• Guaranteeing complete data fidelity and consistency between the source and target databases

upon cutover.

• Establishing a secure, high-bandwidth network connection between the on-premise data center and

Azure to support the migration.

• Developing a detailed cutover plan to ensure a smooth, low-risk transition of all applications to the

new Azure database.

Expected Solution Deliverables & Format

1. Solution Architecture Diagram:

o A high-level diagram illustrating the migration architecture: On-Premise Data Center ->

Azure ExpressRoute -> Azure VNet -> Azure SQL Managed Instance, with Azure DMS shown

as the orchestration service connecting the source and target.

2. Pre-Migration Assessment Report (DMA):

o Screenshots from the Data Migration Assistant (DMA) report, highlighting identified

compatibility issues (if any) and feature parity recommendations for the target Azure SQL

Managed Instance.

o A summary of any remediation steps required before initiating the migration.

3. Azure DMS Project Configuration:

o Screenshots detailing the setup of the online migration project within the Azure Database

Migration Service (DMS).

o This should include the configuration of the source (On-prem SQL) and target (Azure SQL

MI) endpoints.

o A screenshot of the DMS monitoring view showing the status of the initial full

backup/restore ("initial seeding") and the ongoing status of "Continuous sync".

4. Cutover Plan and Runbook:

o A detailed, step-by-step cutover runbook document. This plan must include:

▪ Pre-flight checklist (e.g., final sync status, application team readiness).

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 24 of 75

▪ A communication plan for all stakeholders.

▪ Precise steps to stop application traffic to the source database.

▪ The procedure for initiating the "Cutover" in the DMS portal.

▪ Instructions for reconfiguring application connection strings to point to the new

Azure SQL MI.

▪ A post-cutover validation plan.

5. Proof of Functionality (Screenshots & Explanations):

o A screenshot from the DMS Monitor showing a "Completed" status for the migration.

o Post-migration validation results (e.g., SQL queries showing row count comparisons for key

tables between the source and target to prove data integrity).

o Screenshots from Azure Monitor showing the performance metrics (e.g., CPU, I/O) of the new

Azure SQL Managed Instance under live application load.

6. Documentation Snippets:

o A brief excerpt from a "Design Document" justifying the choice of the SQL MI service tier

(e.g., "The Business Critical tier was selected to provide high availability via a multi-replica

configuration and superior I/O performance required for our transactional workload").

o A snippet from the "Deployment Guide" explaining the network security configuration, such

as Network Security Group (NSG) rules for the SQL MI subnet.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 25 of 75

Part 2: Elite PySpark Engineering & Governance

This section marks a crucial paradigm shift, transitioning from the structured, query-based world of SQL into

programmatic, first-principles problem-solving using PySpark. The projects detailed are sophisticated, data-

driven engines designed to handle high-stakes business problems.

The narrative begins by showcasing how to solve foundational business challenges by mastering data

integration and governance at scale.

Case Study P1 addresses this directly by tackling the critical omnichannel problem for a major retailer,

harmonizing disparate data into a single source of truth. This is paired with

Case Study P2, which elevates this precision engineering to the mission-critical domain of GDPR

compliance, building an auditable pipeline for data erasure requests where accuracy is non-negotiable.

With that foundation established, the focus shifts to modeling complex, dynamic systems.

Case Study P3 applies an algorithmic mindset to the digital domain by engineering a sophisticated

"trending now" algorithm for a podcast platform that captures true user engagement. The journey

culminates with the centerpiece,

Case Study P4, which demonstrates a deep algorithmic capability by building a digital twin of a city's

transportation network, even emulating graph traversal on DataFrames to simulate disruptions.

Together, these four case studies paint a comprehensive picture of an elite data engineer who can

harmonize fragmented data, implement critical governance, and architect advanced, non-ML data products

to drive direct business value.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 26 of 75

Case Study P1: Comparing Online vs. In-Store Product
Performance

"Couture Collective," a contemporary fashion brand, operates a successful e-commerce website alongside a

chain of physical retail stores. However, their online and in-store operations teams function in silos. Each

team uses a separate system to track sales, leading to fragmented data with different schemas and naming

conventions.

This data divide creates significant business challenges. The merchandising team cannot get a unified view

of a product's success. A dress might be a bestseller online but a complete dud in stores, leading to poor

inventory allocation-overstocking stores with items that only sell online. Marketing efforts are also

inefficient, with digital campaigns promoting products that don't perform well in the target channel. To

become a truly data-driven omnichannel retailer, Couture Collective must break down these silos and create

a single source of truth for product performance.

Your Role & Objective

As a Data Engineer on the newly formed "Omnichannel Analytics" team, your primary objective is to build a

robust PySpark pipeline that ingests, cleans, and harmonizes the disparate sales data. The goal is to

produce a unified dataset that allows business leaders to directly compare product performance across

online and in-store channels, enabling smarter decisions for inventory management, marketing spend, and

merchandising strategy.

Available Data (CSV Files)

You have been provided with three CSV files representing the different data sources:

1. instore_sales.csv

• transaction_id: String

• transaction_date: String (YYYY-MM-DD format)

• store_id: String

• product_sku: String (The product identifier)

• units_sold: Integer

• unit_price: Decimal

2. online_sales.csv

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 27 of 75

• order_id: String

• order_datetime: String (ISO 8601 timestamp)

• customer_id: String

• sku: String (The product identifier)

• quantity: Integer

• price_per_unit: Decimal

3. product_master.csv

• product_sku: String (Primary Key)

• product_name: String

• category: String (e.g., "Dresses", "Tops", "Accessories")

• style: String

• color: String

PySpark ETL Development Tasks (Jupyter Notebook)

Your notebook must implement the following tasks, with markdown comments explaining your logic,

especially the harmonization and pivoting steps.

1. Data Ingestion and Schema Harmonization

• Read all three CSV files into PySpark DataFrames.

• Create two separate, clean DataFrames-one for in-store sales and one for online sales-that share an

identical, harmonized schema. This critical step involves:

o Selecting only the necessary columns.

o Renaming columns to be consistent (e.g., rename product_sku and sku to a common name

like sku; rename units_sold and quantity to units).

o Casting data types to be consistent (e.g., ensure prices are DecimalType).

o Adding a new literal column named channel to each DataFrame with the value 'In-Store' or

'Online'.

2. Union and Enrichment

• Use the unionByName transformation to combine the two harmonized DataFrames into a single,

unified sales dataset.

• Join this unified dataset with the product_master DataFrame to enrich the sales data with product

details like product_name and category.

3. Calculate Key Performance Indicators (KPIs)

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 28 of 75

• Perform a groupBy operation on sku, product_name, category, and channel.

• For each product within each channel, calculate the following core KPIs:

o total_units_sold

o total_revenue

o distinct_transactions (the count of unique transaction/order IDs)

4. Pivot Data for Direct Comparison

• To enable side-by-side analysis, transform your "tall" data (one row per product per channel) into a

"wide" format.

• Perform a groupBy on the product identifiers (sku, product_name) and use the .pivot('channel')

function.

• Apply aggregations for each KPI within the pivot to create columns like in_store_total_revenue and

online_total_revenue in the same row for each product.

5. Analyze Performance Deltas

• On the final pivoted DataFrame, create new columns to calculate the performance difference

between channels (e.g., revenue_delta = online_revenue - in_store_revenue).

• Identify "Channel Stars": products that are exceptionally strong in one channel but weak in the other.

For example, filter for products where online sales are more than 10x in-store sales, and vice-versa.

Expected Final Deliverable

A single, well-commented Jupyter Notebook (.ipynb) that includes:

1. The complete PySpark code for all ingestion, harmonization, aggregation, and pivoting tasks.

2. Markdown cells that clearly explain your logic, especially the decisions made during schema

harmonization and the structure of the final pivoted view.

3. The final output displayed as a DataFrame showing the side-by-side comparison of KPIs for a

selection of products.

4. A separate output DataFrame listing the top 10 "Online-Only Stars" and top 10 "In-Store-Only Stars"

based on your delta analysis.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 29 of 75

Case Study P2: Building a Scalable Pipeline to Automate GDPR
User Data Erasure Requests

Company Background

"ConnectSphere" is a fast-growing social networking platform for professionals. The platform allows users

to create detailed profiles, publish articles, comment on posts, and interact through direct messaging. With

millions of users across Europe, ConnectSphere's primary business imperative is to maintain user trust and

strictly adhere to data privacy regulations like the GDPR.

The Business Problem Solved

Under Article 17 of the GDPR, users have the "Right to be Forgotten," meaning they can request the

complete erasure of their personal data without undue delay. For ConnectSphere, fulfilling these requests

manually is a high-risk, unscalable process. A user's data isn't in one place; it's fragmented across numerous

microservices and databases:

• Profile information is in a user database.

• Published articles are in a content management system.

• Comments and likes are in an engagement database.

• Direct messages are in a separate chat system.

• Support tickets are in a customer service platform.

Failing to find and delete even one piece of data can result in multi-million euro fines and significant

reputational damage. The company needs a centralized, automated, and auditable pipeline to handle these

erasure requests reliably and at scale.

Your Role & Objective

As a Senior Data Engineer on the new Data Governance team, your objective is to build the core data

processing engine that automates the erasure process. Your solution must be robust, precise, and create an

immutable audit trail to prove compliance. The logic will be developed and perfected in a local Jupyter

Notebook using sample CSV data extracts.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 30 of 75

Available Data (CSV Files)

You have been provided with five CSV files representing data extracts from different parts of the

ConnectSphere platform:

1. user_profiles.csv

a. user_id: String (Primary Key, e.g., "U7321")

b. username: String

c. email: String

d. signup_date: String (ISO 8601)

e. country: String

2. user_articles.csv

a. article_id: String

b. author_id: String (Foreign Key to user_id)

c. article_title: String

d. publish_timestamp: String (ISO 8601)

3. user_engagement.csv

a. engagement_id: String

b. engaging_user_id: String (The user who liked or commented)

c. target_article_id: String (The article being interacted with)

d. engagement_type: String ("LIKE", "COMMENT")

e. comment_text: String (Nullable)

f. engagement_timestamp: String (ISO 8601)

4. direct_messages.csv

a. message_id: String

b. sender_id: String

c. recipient_id: String

d. message_text: String

e. message_timestamp: String (ISO 8601)

5. support_tickets.csv

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 31 of 75

a. ticket_id: String

b. requester_email: String

c. ticket_subject: String

d. creation_timestamp: String (ISO 8601)

PySpark ETL Development Tasks (Jupyter Notebook)

Your notebook must implement a function or class that takes a user_id_to_delete as input and performs the

following tasks:

1. Identify All Data Footprints:

a. The initial request only provides a user_id. You must find all associated data points. For

example, use the email from the user_profiles table to find matching records in the

support_tickets table.

2. Surgical Data Deletion:

a. Read all five CSV files into PySpark DataFrames.

b. Filter each DataFrame to remove all records directly associated with the user_id_to_delete.

i. In user_profiles, delete the user's main record.

ii. In user_articles, delete all articles authored by the user.

iii. In user_engagement, delete all likes and comments made by the user.

c. Handle Complex Cases: The trickiest part is handling data where the user is a participant

but not the sole owner.

i. Engagement on other's posts: When another user's article is liked or commented

on by the user-to-be-deleted, you must delete the engagement record

(user_engagement) but not the article itself.

ii. Direct Messages: You must delete messages sent by the user. For messages received

by the user, you should not delete the message from the sender's history. Instead,

you should anonymize the recipient_id field, changing it to something like

"[DELETED_USER]". This preserves the other user's chat history while removing the

link to the deleted user.

3. Create an Audit Log:

a. As you process the deletion, create a new DataFrame to serve as an audit log. For every

record you delete or anonymize, add a row to this log.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 32 of 75

b. The audit log should contain timestamp, source_table, record_id_deleted, and

action_taken("DELETED", "ANONYMIZED"). This log is non-negotiable for proving

compliance.

4. Output Cleaned Datasets:

a. Write the modified DataFrames (those with records removed or anonymized) back out to a

"cleaned" directory as new CSV files.

b. Write the audit_log DataFrame to its own CSV file.

Expected Final Deliverable

A single, well-commented Jupyter Notebook (.ipynb) containing the PySpark code that successfully ingests

the sample data, performs the precise deletions and anonymizations, and generates both the cleaned

datasets and a detailed audit log for a given user_id.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 33 of 75

Case Study P3: Engineering a 'Trending Now' Chart for a Podcast
Platform

"SoundWave," a rapidly growing podcast platform, faces a critical content discovery problem. Their current

"Top Podcasts" chart is based on simple all-time listen counts, which creates a feedback loop where already

popular shows remain at the top, making it nearly impossible for new and emerging creators to get noticed.

This stale ranking system leads to poor user engagement and creator dissatisfaction.

To solve this, SoundWave needs to replace its static chart with a dynamic "Trending Now" algorithm. This

requires an engine that can process millions of daily listening events to not only measure popularity but

also capture momentum and velocity. The core challenge is to design and implement a scalable PySpark

job that can perform complex time-series analysis, calculate rolling metrics, and apply a weighted scoring

formula to produce a fair and engaging ranking.

Your Role & Objective

As a Senior Data Engineer on the Content Discovery team, your objective is to design and build the core

PySpark logic that powers the new "Trending Now" feature. Your solution must be efficient, robust, and

capable of transforming raw listening data into a ranked list that accurately reflects what's currently

capturing listener attention.

Available Data (CSV Files)

You have been provided with three CSV files representing a sample of the platform's data:

1. listening_events.csv

• user_id: String (Anonymized user identifier)

• episode_id: String (Unique ID for an episode)

• listen_timestamp: String (ISO 8601 timestamp of when the listen occurred)

2. episode_metadata.csv

• episode_id: String (Primary Key)

• podcast_id: String (Foreign Key to the podcast)

• episode_title: String

• duration_seconds: Integer

3. podcast_metadata.csv

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 34 of 75

• podcast_id: String (Primary Key)

• podcast_title: String

• category: String (e.g., "Technology", "True Crime", "Comedy")

PySpark ETL Development Tasks (Jupyter Notebook)

Your notebook must implement the following tasks, with markdown comments explaining your logic,

especially the final scoring formula.

1. Data Ingestion and Enrichment

• Read all three CSV files into PySpark DataFrames.

• Perform the necessary joins to create a single, enriched DataFrame that links each listening event to

its corresponding podcast_id, podcast_title, and category.

• Convert the listen_timestamp string into a proper timestamp data type and then extract the

listen_date for daily aggregation.

2. Aggregate Daily Listen Counts

• From the enriched DataFrame, perform a groupBy operation on listen_date and podcast_id to

calculate the total number of listens for each podcast per day. This will serve as your base time-

series dataset.

3. Engineer Features with Window Functions

• This is the core of the algorithm. On your daily aggregated data, use PySpark's window functions

partitioned by podcast_id and ordered by listen_date to engineer two critical features:

o Popularity Score: Calculate the 7-day rolling average of listens. This smooths out daily

spikes and measures stable, recent popularity.

o Momentum Score: First, use the lag function to get the listen count from 7 days prior. Then,

calculate the week-over-week percentage growth. Handle cases where the previous week's

count was zero to avoid division errors (you can default the growth to a high number or

zero, justify your choice).

4. Calculate the Final Weighted Trending Score

• Create a new column named trending_score.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 35 of 75

• Implement a weighted formula that combines your engineered features. For this case, use the

formula: trending_score = (Popularity_Score * 0.4) + (Momentum_Score * 0.6). This formula balances

raw popularity with recent growth, giving momentum a slight edge.

5. Generate the Final Ranked Charts

• Create the primary "Trending Now" chart by ranking all podcasts in descending order based on their

final trending_score for the most recent date in the dataset.

• As a final step, demonstrate the flexibility of your solution by generating a per-category trending

chart. Use a window function partitioned by category to rank podcasts within their own genre.

Expected Final Deliverable

A single, well-commented Jupyter Notebook (.ipynb) that contains:

1. The PySpark code that performs all the required data ingestion, transformation, and analysis tasks.

2. Clear markdown cells explaining your approach, particularly the logic behind the "Trending Score"

and how you handled any edge cases.

3. The final output displayed as a DataFrame showing the Top 20 overall "Trending Now" podcasts.

4. A sample output DataFrame showing the Top 5 trending podcasts for a specific category (e.g.,

"Technology").

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 36 of 75

Case Study P4: Urban Mobility Flow Optimization

Business Justification & The PySpark Challenge

A leading urban planning consultancy has been contracted by the city of Hyderabad to tackle its notorious

traffic congestion. The goal is to build a digital twin of the city's mobility patterns to identify hidden

bottlenecks, simulate the impact of major events, and ultimately recommend infrastructure changes.

The raw data is a messy, high-volume collection from disparate sources: public transit tap-ins, ride-sharing

app pings, and road traffic sensors. A robust, scalable engine is needed to process this data. The core

algorithmic logic must be developed and perfected in a local Jupyter Notebook using PySpark before being

deployed at city-scale, allowing for rapid, cost-effective iteration.

Your Role & Objective

As the Lead Data Scientist on this project, your task is to write the core PySpark logic that transforms

fragmented, multi-modal data into a coherent model of the city's transportation network. Your solution

must be highly efficient, algorithmically advanced, and architecturally scalable.

Available Data (CSV Files)

You have been provided with four CSV files representing anonymized data samples:

1. trip_segments.csv

a. device_id: String (Anonymized user identifier)

b. transport_mode: String ("BUS", "METRO", "AUTO", "WALK")

c. start_time: String (ISO 8601 timestamp)

d. end_time: String (ISO 8601 timestamp)

e. start_lat, start_lon: Float (Start coordinates)

f. end_lat, end_lon: Float (End coordinates)

2. road_sensors.csv

a. sensor_id: String

b. road_name: String (e.g., "Banjara Hills Road No 1", "Outer Ring Road")

c. timestamp: String (ISO 8601, hourly)

d. vehicle_count: Integer

e. avg_speed_kmh: Float

f. Note: Data is highly skewed; major roads like "Banjara Hills Road No 1" have millions of

entries.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 37 of 75

3. special_events.csv

a. event_name: String (e.g., "Cricket Match", "Concert")

b. event_lat, event_lon: Float (Event location coordinates)

c. event_start_time: String (ISO 8601)

d. event_end_time: String (ISO 8601)

4. transit_network_graph.csv

a. station_A: String

b. station_B: String

c. mode: String ("METRO", "BUS")

d. travel_time_mins: Integer

PySpark ETL Development Tasks (Jupyter Notebook)

Your notebook must implement the following, with detailed markdown comments justifying your key

architectural choices (e.g., why you chose a specific algorithm or optimization technique).

1. Journey Reconstruction with Window Functions: The trip_segments.csv contains disconnected parts of

trips. Your first task is to stitch them into complete end-to-end "journeys."

• Action: Use a PySpark Window Function partitioned by device_id and ordered by start_time.

Calculate the time difference between the end_time of a segment and the start_time of the next

segment for each device.

• Generate a journey_id by identifying sequences of segments where the time gap is less than a

threshold (e.g., 20 minutes). A gap larger than the threshold signifies the start of a new journey. This

demonstrates mastery of advanced windowing logic.

2. Traffic Bottleneck Analysis with Skew Handling: The road_sensors.csv data is heavily skewed towards

major arterial roads. A naive aggregation will lead to severe performance degradation.

• Action: To calculate the average vehicle count per road, you must implement a "salting" technique.

Create a UDF to append a random integer key (e.g., _1, _2) to skewed road_name values. Perform the

aggregation on the salted keys to distribute the work across many partitions, then merge the results.

Explain in your notebook comments why this is critical for performance at scale.

3. Geospatial Analysis with UDFs for Event Impact: The city needs to understand the "blast radius" of

special events.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 38 of 75

• Action: Create a PySpark UDF that accepts latitude/longitude coordinates and calculates the

Haversine distance between two points.

• Cross-join the road_sensors data with special_events. Use your UDF to filter for all sensor readings

that occurred during an event and were located within a 2km radius of the event's coordinates.

Aggregate this data to find the average vehicle_count on surrounding roads during events, creating

a feature for impact analysis.

4. Graph-Based Transit Simulation: This is the most complex task. You will simulate a network disruption.

• Action: Ingest transit_network_graph.csv into a DataFrame to represent the public transit network.

• The Scenario: The "Ameerpet" metro station is closed for maintenance.

• Your Task: Using PySpark DataFrames to emulate graph operations, find all journeys from your

reconstructed journeys data that are now "broken" - i.e., they used a metro segment passing

through "Ameerpet". For each broken journey, find the shortest alternative path using only the

remaining bus network and a combination of walking. This requires implementing a Breadth-First

Search (BFS) or similar shortest-path algorithm logic using PySpark's iterative processing (i.e., joining

a DataFrame to itself in a loop). This demonstrates deep algorithmic thinking within a distributed

framework.

Expected Final Deliverable

A single, professional-grade Jupyter Notebook (.ipynb). The notebook must contain not just the PySpark

code, but also clear, concise markdown cells that explain the "why" behind your key technical decisions

(journey reconstruction logic, salting for skew, Haversine distance UDF, graph simulation approach). The

final output should be the schemas and sample data for:

1. reconstructed_journeys: A DataFrame showing complete user journeys with their associated

segments.

2. event_impact_analysis: A DataFrame showing roads most impacted by special events.

3. disruption_rerouting_plan: A DataFrame showing broken journeys and their suggested alternative

bus/walk routes.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 39 of 75

Part 3: End-to-End Machine Learning Solutions with PySpark
This final section demonstrates the ability to complete the full data lifecycle, moving beyond data

engineering to build and deploy high-impact, end-to-end machine learning models at scale. These projects

prove a capacity to transform vast, raw datasets into the predictive intelligence that drives direct business

value and strategic advantage.

The journey begins with

Case Study M1, which addresses one of the most fundamental challenges in retail and logistics: demand

forecasting. The solution directly impacts a company's bottom line by enabling just-in-time inventory,

minimizing waste, and preventing lost sales from stockouts. Next,

Case Study M2 delves into the realm of Natural Language Processing (NLP) by building an intelligent

system to automate the classification and routing of customer service tickets. This solution attacks major

operational pain points, reducing costs and dramatically improving customer response times. Finally,

Case Study M3 highlights creativity and advanced modeling by tackling a sophisticated problem from

organizational psychology: predicting Big Five personality traits from written text.

Collectively, these case studies demonstrate a versatile ML Engineer, capable of leveraging PySpark to build,

train, and validate a wide range of in-demand predictive models.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 40 of 75

Case Study M1: AI-Powered Demand Forecasting for Supply
Chain Optimization

Business Problem & Justification

"Global Mart," a major retail corporation, operates hundreds of stores and a massive e-commerce platform.

One of its biggest financial drains is inefficient inventory management, which stems from inaccurate

demand forecasting. The current system uses simple historical averages, leading to two costly problems:

1. Overstocking: The company wastes millions on warehousing costs for products that don't sell,

which eventually have to be heavily discounted or discarded, eroding profit margins.

2. Stockouts: Popular items frequently run out of stock, leading to lost sales and frustrated customers

who may switch to a competitor permanently.

To solve this, Global Mart needs to replace its outdated method with an intelligent, AI-driven demand

forecasting model. An accurate model that can predict future sales for each product at each store will

enable the company to implement a just-in-time inventory strategy, drastically cutting costs and

maximizing revenue.

Your Role & Objective

As an ML Engineer on Global Mart's new supply chain analytics team, your objective is to build a scalable

forecasting model. You will use PySpark to analyze historical sales data and build a model that accurately

predicts product demand for the upcoming weeks. This prototype will be developed in a Jupyter Notebook

to prove the value of AI in solving the company's core logistics problem.

Available Data (CSV Files)

You have been provided with three data extracts:

1. sales_daily.csv: Historical daily sales data for each product at each store.

a. date: String (YYYY-MM-DD format)

b. store_id: Integer

c. product_id: Integer

d. units_sold: Integer

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 41 of 75

2. product_details.csv: Metadata for each product.

a. product_id: Integer

b. product_category: String

c. brand: String

3. store_promotions.csv: Information about which products were on promotion at which store.

a. date: String (YYYY-MM-DD format)

b. store_id: Integer

c. product_id: Integer

d. on_promotion: Boolean (True/False)

PySpark AI/ML Tasks (Jupyter Notebook)

Your notebook should implement an end-to-end pipeline to build and evaluate the demand forecasting

model.

1. Data Preparation and Feature Engineering

This is the most critical step in any forecasting project.

• Read all three CSV files into PySpark DataFrames and join them into a single, unified dataset.

• Create Time-Series Features: From the date column, extract features that capture seasonality and

trends, such as:

o Day of the week

o Week of the year

o Month

o Quarter

• Create Lag Features: Create features that represent past sales data, as this is a strong predictor of

future sales. For example, for a given day, create columns for units_sold_1_week_ago and

units_sold_2_weeks_ago.

• Create Rolling Window Features: Calculate rolling averages of sales, such as the

avg_units_sold_last_4_weeks. This helps smooth out noise and capture recent trends.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 42 of 75

2. Model Training

• Feature Assembling: Use PySpark's VectorAssembler to combine all your engineered features into a

single features vector.

• Model Selection: Frame this as a regression problem where the goal is to predict the units_sold.

Use a powerful tree-based model from PySpark MLlib, such as Random Forest Regressor or

Gradient-Boosted Tree (GBT) Regressor, as they perform well on tabular data with complex

interactions.

• Training: Split your data into a training set (e.g., historical data up to the last month) and a test set

(the most recent month). Train your chosen model on the training data.

3. Model Evaluation

You must prove the model's predictive accuracy.

• Make predictions on your test set.

• Use PySpark's RegressionEvaluator to compare the predicted sales (prediction column) to the

actual sales (units_sold column).

• Calculate standard regression metrics to assess your model's performance:

o Root Mean Squared Error (RMSE): Measures the average magnitude of the prediction

errors.

o Mean Absolute Error (MAE): Measures the average absolute difference between

predictions and actuals.

o R-squared (R2): Indicates the proportion of the variance in the sales data that is predictable

from the features.

Expected Final Deliverable

A single, well-commented Jupyter Notebook that demonstrates the full process of building a demand

forecasting model: loading and joining data, extensive time-series feature engineering, training a regression

model using PySpark MLlib, and a thorough evaluation of the model's forecasting accuracy.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 43 of 75

Case Study M2: Automating Customer Service Ticket
Classification and Routing

Business Problem & Justification

Continuing with Global Mart, the company faces a separate crisis in its customer support department, which

receives thousands of daily service requests through its online portal. Currently, a team of support agents

manually reads and categorizes every single ticket before routing it to the appropriate specialized team

(e.g., Billing, Shipping, Technical Support, Returns).

This manual process is a major bottleneck, leading to:

• Slow Response Times: Customers wait hours or even days for an initial response as tickets sit in a

queue waiting to be classified.

• High Operational Costs: A significant portion of agent time is spent on low-value administrative

tasks instead of actually solving customer problems.

• Inconsistent Categorization: Manual classification is prone to human error, leading to tickets being

sent to the wrong department, causing further delays and internal confusion.

To solve this, the company needs an intelligent system that can automatically read and understand

incoming tickets, classify them by topic, and route them to the correct team in real-time.

Your Role & Objective

As an ML Engineer, your objective is to build a robust text classification model using PySpark. You will

develop a supervised learning model that can accurately predict the category of a customer support ticket

based on its text content. This project will be prototyped in a Jupyter Notebook to demonstrate the

feasibility and value of automating this critical business process.

Available Data (CSV Files)

You have been provided with a single dataset representing a historical sample of customer support tickets.

customer_tickets.csv:

• ticket_id: String

• ticket_subject: String (The title of the support request)

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 44 of 75

• ticket_body: String (The full text of the customer's message)

• category: String (The "ground truth" category assigned by a human agent, e.g., "Billing", "Shipping",

"Technical Support", "Returns", "Account Inquiry")

PySpark AI/ML Tasks (Jupyter Notebook)

Your notebook should implement an end-to-end NLP pipeline to train and evaluate the classification model.

1. Data Preparation and Feature Engineering

• Read the customer_tickets.csv file into a PySpark DataFrame.

• Text Combination: Combine the ticket_subject and ticket_body columns into a single text column

to create a complete feature for analysis.

• NLP Preprocessing Pipeline: Create a pipeline of transformations to clean the text data:

o Tokenization: Split the text into individual words.

o Stop Word Removal: Remove common, non-informative words.

o TF-IDF Vectorization: Use the Term Frequency-Inverse Document Frequency (TF-IDF)

algorithm to convert the cleaned text into numerical vectors that the model can understand.

• Label Indexing: Convert the string-based category labels into numerical indices using StringIndexer.

2. Model Training

• Feature Assembling: Use VectorAssembler to create a single features vector from your TF-IDF

output.

• Model Selection: This is a multi-class classification problem. Choose a suitable model from PySpark

MLlib, such as Logistic Regression (with multi-class support), Naive Bayes, or Random Forest

Classifier.

• Pipeline Creation: Construct a pyspark.ml.Pipeline that chains together all your preprocessing steps

(tokenizer, stop word remover, TF-IDF, label indexer) and your chosen classifier model. This ensures

the entire workflow is reproducible.

• Training: Split your data into training and test sets (e.g., 80/20) and fit the pipeline on the training

data.

3. Model Evaluation

• Make predictions on your test data.

• Use PySpark's MulticlassClassificationEvaluator to assess your model's performance.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 45 of 75

• Calculate key classification metrics:

o Accuracy: The overall percentage of tickets classified correctly.

o Precision: Of the tickets predicted for a category, how many were correct?

o Recall: Of all the actual tickets in a category, how many did the model find?

o F1-Score: The harmonic mean of Precision and Recall, providing a single score for model

quality.

Expected Final Deliverable

A single, well-commented Jupyter Notebook that demonstrates the full lifecycle of building a text

classification system: loading and cleaning text data, creating a robust NLP feature engineering pipeline,

training a multi-class classification model, and performing a thorough evaluation using standard industry

metrics.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 46 of 75

Case Study M3: Predicting Personality Traits for High-
Performance Team Building

Business Problem & Justification

A fast-growing tech consultancy, "Synergy Solutions," specializes in assembling elite, temporary teams of

engineers for high-stakes projects. Their primary challenge is that technical skill alone doesn't guarantee a

team's success; personality fit and team dynamics are crucial. A team composed entirely of introverted

leaders or one lacking conscientious members often fails to meet deadlines due to poor communication or

lack of organization.

Synergy Solutions wants to move beyond subjective assessments and build a data-driven model to predict

the "Big Five" (OCEAN) personality traits of its potential contractors. By analyzing the writing style from a

contractor's public professional blog posts, they believe they can create a personality profile. This will allow

the company to assemble not just skilled teams, but synergistic teams, reducing project risk and

dramatically improving client outcomes.

Your Role & Objective

As the lead ML Engineer, your objective is to build a PySpark-based model that predicts a person's Big Five

personality scores (Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism) based on

their written text. The model must be developed and validated in a Jupyter Notebook, proving that

personality traits can be accurately inferred from professional writing.

Available Data (CSV Files)

You have been provided with two CSV files:

1. author_texts.csv: A collection of blog posts from various authors.

a. author_id: String (A unique identifier for each author)

b. text: String (The full text of a blog post)

2. author_scores.csv: The "ground truth" Big Five personality scores for each author, obtained from a

standardized personality test.

a. author_id: String (The primary key to join with author_texts.csv)

b. openness: Float (Score from 0.0 to 1.0)

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 47 of 75

c. conscientiousness: Float (Score from 0.0 to 1.0)

d. extraversion: Float (Score from 0.0 to 1.0)

e. agreeableness: Float (Score from 0.0 to 1.0)

f. neuroticism: Float (Score from 0.0 to 1.0)

PySpark AI/ML Tasks (Jupyter Notebook)

Your notebook should implement an end-to-end machine learning pipeline to solve this multi-output

regression problem.

1. Data Aggregation and Preparation

• Read both CSV files into PySpark DataFrames.

• The author_texts.csv file has multiple rows per author. You must first aggregate all text from the

same author_id into a single, large document.

• Join the aggregated text data with the corresponding personality scores from author_scores.csv to

create a unified training DataFrame.

2. NLP Feature Engineering Pipeline

This is the core of the project. You need to convert the raw text into meaningful numerical features that can

predict personality.

• Tokenization: Split the text into individual words (tokens).

• Stop Word Removal: Remove common words (e.g., "the," "a," "is") that don't carry personality

signals.

• TF-IDF Vectorization: Use the Term Frequency-Inverse Document Frequency (TF-IDF) algorithm

to convert the text into a numerical vector. This technique gives more weight to words that are

significant to a specific author's writing style compared to the entire corpus.

• Assemble Features: Combine all engineered features into a single features vector column required

by PySpark MLlib.

3. Multi-Output Model Training

Predicting five scores simultaneously is a multi-output problem.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 48 of 75

• Model Selection: Use a model capable of handling this, such as Random Forest Regressor or

Gradient-Boosted Tree (GBT) Regressor. You will need to train one model for each of the five

personality traits.

• Pipeline Implementation: Construct a pyspark.ml.Pipeline object that includes your feature

engineering stages and the regressor model. This ensures that the same transformations are applied

consistently to both training and test data.

• Training: Split your data into training and testing sets (e.g., 80/20 split) and fit your pipeline on the

training data for each of the five personality traits.

4. Model Evaluation

• Make predictions on your test dataset.

• For each of the five models, evaluate its performance using standard regression metrics like Root

Mean Squared Error (RMSE) and R-squared (R2). This will tell you how accurately your model can

predict personality scores from text.

• Present your results clearly in a summary table.

Expected Final Deliverable

A single, well-commented Jupyter Notebook that performs the full ML pipeline: data preparation, advanced

NLP feature engineering, training five separate regression models, and a thorough evaluation of the results

with clear metrics for each personality trait.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 49 of 75

Part 4: From Analytics to Architecture: Advanced SQL & Business
Intelligence
This section marks a crucial transition in the portfolio. Having established the foundational data platforms in

Part 1, the focus now shifts from the architecture of data movement to a deep and versatile mastery of the

tools that create business value: SQL and Power BI.

The narrative begins by establishing the architectural bedrock in

Case Study S1, which moves beyond analyzing existing data to architecting a new operational database

from the ground up, ensuring data integrity through robust design and stored procedures. With this

foundation in place, the focus shifts to deep analytical problem-solving.

Case Study S2 demonstrates the broad, practical application of SQL to answer a wide array of challenging

business questions for a ride-sharing app, while

Case Study S3 showcases elite, specialized techniques like recursive queries and RFM segmentation to

perform advanced network and customer analysis. Finally,

Case Study S4 demonstrates the critical 'last mile' of analytics, showing how this backend expertise is

leveraged to build a sophisticated, board-level ESG dashboard in Power BI that drives strategic, data-

informed decision-making.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 50 of 75

Case Study S1: Architecting the Operational Database for Aura
Music Festival

Business Problem & Justification

Aura Music Festival is scaling up and its previous system of using disconnected spreadsheets to manage

operations is failing. The ticketing, vendor, and security teams work in silos, leading to critical errors. For

example, a VIP ticket might be sold even when the VIP section is full, or a vendor's sales data might not

match their inventory, making it impossible to track profitability.

The festival needs a robust, centralized SQL database to run its entire real-time operations. This requires not

just storing data, but building the business logic directly into the database to ensure data integrity,

automate common tasks, and provide secure, simplified views of the data to different teams.

Your Role & Deliverables

As the Lead Database Developer, your mission is to architect and build the core database objects that will

power the festival's operations. Your deliverables will not be simple queries, but the foundational database

code itself.

SQL Development Tasks

You are tasked with writing the CREATE statements and DML logic for the following database objects.

1. Table Creation and Constraints

Write the CREATE TABLE statements for the following tables. You must include appropriate Primary Keys,

Foreign Keys, NOT NULL constraints, and CHECK constraints to enforce business rules.

• artists (artist_id, artist_name, genre)

• stages (stage_id, stage_name, capacity)

• performances (performance_id, artist_id, stage_id, start_time, end_time)

• attendees (attendee_id, ticket_tier, entry_time, balance)

• vendors (vendor_id, vendor_name, category)

• products (product_id, vendor_id, product_name, price, stock_quantity)

• transactions (transaction_id, attendee_id, product_id, quantity, transaction_time)

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 51 of 75

2. Stored Procedures for Business Operations

Write the code for the following stored procedures that encapsulate critical business logic.

• usp_SellTicket(ticket_tier):

o A procedure that creates a new attendee record and returns the new attendee_id. It should

check if the festival capacity has been reached.

• usp_ProcessMerchandiseSale(attendee_id, product_id, quantity):

o A procedure that processes a sale. It must perform multiple actions in a single transaction:

▪ Check if the product has enough stock_quantity.

▪ Check if the attendee has enough balance.

▪ Insert a new record into the transactions table.

▪ Decrease the stock_quantity in the products table.

▪ Decrease the balance in the attendees table.

o If any step fails, the entire transaction should be rolled back.

3. Triggers for Data Integrity and Auditing

Write the code for the following triggers to automate actions based on data changes.

• trg_LogPerformanceChange:

o An AFTER UPDATE trigger on the performances table. If a performance's start_time is

changed, it should insert a record into an audit_log table noting the old time, the new time,

and which user made the change.

• trg_PreventDuplicateBooking:

o A BEFORE INSERT trigger on the performances table. It should prevent a new performance

from being scheduled if the selected artist or stage is already booked during that time slot.

4. Views for Simplified Reporting

Write the CREATE VIEW statements for the following views to provide simplified, secure access to data for

different teams.

• vw_VendorSalesSummary:

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 52 of 75

o A view for the finance team that joins transactions, products, and vendors. It should show

vendor_name, product_name, total_quantity_sold, and total_revenue, but hide individual

transaction details.

• vw_LiveStageSchedule:

o A view for the operations team that joins performances, artists, and stages. It should show

stage_name, artist_name, start_time, and end_time, ordered by the current time.

Expected Final Deliverable

A collection of SQL script files (.sql) that demonstrates a complete and operational database schema. The

deliverables should be organized and well-commented, including:

1. Schema Script (schema.sql): A single file containing all the CREATE TABLE statements with their

respective constraints (Primary Keys, Foreign Keys, CHECK, NOT NULL).

2. Stored Procedures Script (stored_procedures.sql): A file containing the code for the

usp_SellTicket and usp_ProcessMerchandiseSale stored procedures.

3. Triggers Script (triggers.sql): A file containing the code for the trg_LogPerformanceChange and

trg_PreventDuplicateBooking triggers.

4. Views Script (views.sql): A file containing the CREATE VIEW statements for

vw_VendorSalesSummary and vw_LiveStageSchedule.

5. A README file that explains the purpose of each script and the overall database design.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 53 of 75

Case Study S2: Engineering a Data-Driven Future at CityHop

Company Background

CityHop is a fast-growing ride-sharing app operating in over 50 cities. The company's success hinges on its

ability to make smart, data-driven decisions for dynamic pricing, driver incentives, and operational

efficiency. The platform generates millions of data points daily from trips, payments, and user activity.

The Challenge

The current data infrastructure, built quickly for launch, is now a major bottleneck. It relies on slow, hourly

batch scripts and a rigid SQL database. This system cannot provide timely insights, struggles with complex

analytical queries, and is failing under the weight of increasing data volume. The business is flying blind on

critical performance metrics.

The Call to Action (Your Role)

As a Senior Data Engineer at CityHop, you have been tasked with building the new analytics foundation

from the ground up. Your mission is to transform raw data into actionable intelligence. Management needs

reliable answers to key business questions, and they need them now.

Your Deliverables: Key Business Questions to Answer

Your primary objective is to develop the data models and write the production-level SQL queries necessary

to answer the following list of critical business questions. This is your backlog.

I. Core Performance & Growth Metrics

1. How many unique riders took a trip each day?

2. What is the day-over-day percentage growth in total fare revenue?

3. What are the top 5 most profitable routes by total fare amount?

4. How does the rolling 30-day total fare revenue compare with the previous 30-day period?

5. Who are the top 3 drivers by total fares earned, for each city zone?

II. Rider Behavior & Engagement Analysis

6. What was the fare of each rider's second most expensive trip?

7. When did each rider take their first-ever trip, and how many days ago was that?

8. Which riders subscribed to CityHop Plus within 7 days of their first trip?

9. What is the cumulative count of unique ride types each rider has used over time?

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 54 of 75

10. Which riders took at least three trips per week over the last two months?

11. What is the quarterly ranking of riders by their total number of trips?

12. Which riders took the exact same trip (same start and end location) more than once in a single day?

13. Which trips started or ended between midnight and 5 AM?

14. Which riders have used Premium rides but have never used a Pool ride?

III. Advanced & Relational Analysis

15. Which riders have spent more on fares than the average for their primary city zone?

16. Are there any ride types with declining usage for three consecutive months?

17. What are the possible two-leg trip combinations to get from downtown to the airport?

18. Which riders have taken a trip from Point A to Point B, and later taken a trip from Point B back to

Point A?

IV. Data Quality & Integrity Audits

19. Were there any hours during the day when zero trips were requested across the entire city?

20. Are there any missing numbers in the trip_id sequence?

21. Are there any instances of 10 or more consecutive missing trip_ids?

22. Has any rider had a gap of more than 30 days between their trips?

Available Data Schema

You have been provided with the following three tables in the data lakehouse to accomplish these tasks.

Riders

Column Name Data Type

rider_id INT

rider_name VARCHAR

signup_date DATE

primary_zone VARCHAR

plus_sub_date DATE

Drivers

Column Name Data Type

driver_id INT

driver_name VARCHAR

home_zone VARCHAR

Trips

Column Name Data Type

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 55 of 75

trip_id INT

rider_id INT

driver_id INT

start_loc VARCHAR

end_loc VARCHAR

ride_type VARCHAR

fare DECIMAL(10,2)

trip_timestamp DATETIME

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 56 of 75

Case Study S3: Customer Segmentation and Network Analysis

Business Problem & Justification

A premium online subscription box company, "CuratedPicks," has a successful business model but lacks a

deep understanding of its customer base. Their marketing efforts are generic, treating all customers the

same. To improve retention and increase profitability, the leadership team wants to implement a

sophisticated customer segmentation strategy based on Recency, Frequency, and Monetary (RFM)

analysis.

Furthermore, they have a "refer-a-friend" program but have no way to analyze its effectiveness or identify

influential customers who drive multi-level sign-ups. The current database is not optimized for these

complex analytical queries, which are slow and resource-intensive. The company needs an advanced SQL

solution to not only calculate these new metrics but also to structure the data and optimize its performance

for reporting.

Your Role & Deliverables

As the Senior Data Analyst, you are responsible for writing the advanced SQL code needed to build this new

segmentation model from the ground up. Your deliverables will focus on advanced SQL techniques not

covered in previous case studies.

Available Data Schema

Here’s the properly formatted version:

customers

Column Name Data Type Description

customer_id INT Unique ID for each customer.

signup_date DATE Date the customer signed up.

referred_by INT customer_id of the person who referred them (nullable).

orders

Column Name Data Type Description

order_id INT Unique ID for each order.

customer_id INT Foreign key to the customers table.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 57 of 75

order_date DATE Date the order was placed.

order_total DECIMAL(10,2) The total value of the order.

Advanced SQL Development Tasks

1. Foundational RFM Segmentation using CTEs

• Write a query using Common Table Expressions (CTEs) to calculate the Recency, Frequency, and

Monetary value for each customer.

• Based on these values, use the NTILE(4) window function to assign each customer a quartile score

(1-4) for R, F, and M, creating RFM segments like '444' (Best Customers) and '111' (Lost Customers).

2. Pivoting Data for Reporting

• The marketing team needs a report showing the total number of customers in each RFM segment,

broken down by their signup year.

• Action: Write a query that first calculates the RFM segment and signup year for each customer.

Then, use the PIVOT operator to transform this data so that each signup year is a separate column,

and the values are the count of customers for each segment. This demonstrates your ability to

reshape data for business intelligence tools.

3. Analyzing Referral Networks with Recursive Queries

• The company wants to find the entire "downline" for its most influential referrers.

• Action: Write a recursive CTE that takes a customer_id as an input and traverses the customers

table to find all customers who were directly or indirectly referred by them, creating a complete

hierarchical view of their referral network.

4. Query Performance Optimization with Indexing

• The previous queries, especially the recursive one, are slow. You need to propose and create indexes

to speed them up.

• Action:

o Write the CREATE INDEX statements for the columns you identify as critical for performance

(e.g., customer_id and order_date in the orders table, and referred_by in the customers

table).

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 58 of 75

o Write a brief explanation for why you chose each index (e.g., "A non-clustered index on

order_date is created to speed up the Recency calculation, as it's a key part of the WHERE

clause."). This demonstrates your understanding of query optimization.

Expected Final Deliverable

A collection of well-commented SQL script files (.sql):

1. A script for the RFM calculation and segmentation.

2. A script demonstrating the PIVOT functionality for the marketing report.

3. A script containing the recursive CTE for network analysis.

4. A script with your CREATE INDEX statements and a commented section explaining your indexing

strategy.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 59 of 75

Case Study S4: Architecting an Enterprise Carbon Footprint &
ESG Dashboard

Company Background

TerraGlobal Logistics is a publicly traded, multinational logistics and freight-forwarding company. With a

massive fleet of trucks, ships, and aircraft, its operations are essential to global trade but also represent a

significant environmental footprint.

Business Problem & Justification

TerraGlobal is facing intense pressure from investors, regulatory bodies, and major corporate clients to

provide accurate, transparent, and timely reporting on its Environmental, Social, and Governance (ESG)

performance. The most critical component of this is quantifying their carbon footprint across all operations

(Scope 1, 2, and 3 emissions).

The data required for this is trapped in disconnected, highly diverse systems:

• Fleet fuel consumption is in a SQL database.

• Facility electricity usage is recorded in monthly PDF utility bills.

• Upstream and downstream supply chain emissions data comes from partners as non-standard CSV

files.

• Corporate travel data is managed by a third-party agency.

The current process is a nightmarish, manual effort undertaken quarterly. It takes a team of analysts weeks

to collate the data in Excel, is prone to significant errors, and provides no actionable insights for reduction

initiatives. The board has deemed this a critical risk to investor confidence and brand reputation.

The Call to Action (Your Role)

As the newly appointed Lead ESG Analytics Developer, you report directly to the Chief Sustainability

Officer (CSO). You are tasked with architecting and building a definitive, automated Power BI dashboard to

serve as the single source of truth for all of TerraGlobal's ESG metrics.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 60 of 75

Your Objective

Your primary objective is to design and implement a comprehensive Power BI solution that moves the

company from reactive, manual reporting to proactive, automated analytics. The platform you build must:

• Integrate and harmonize the disparate and complex data sources into a unified data model.

• Accurately calculate the corporate carbon footprint (in tonnes of CO2e) based on the GHG Protocol,

the global standard.

• Visualize performance against yearly and quarterly reduction targets.

• Provide granular insights that allow business leaders to identify emission "hotspots" and model the

impact of reduction initiatives.

Expected Solution Deliverables & Format

The successfully implemented solution is a sophisticated Power BI application that includes the following:

• Data Modeling: A robust star schema data model built in Power BI, connecting a central Emissions

fact table with dimensions for Date, Business Unit, Country, Emission Source, and GHG Scope.

• Advanced Data Transformation: Extensive use of Power Query (M) to connect to all sources,

including using AI Builder to extract tabular data from the PDF utility bills.

• Complex Calculations: A library of advanced DAX measures to calculate CO2e (carbon dioxide

equivalent) from raw consumption data (e.g., litres of fuel, kWh of electricity) and to track

performance against targets with time-intelligence functions.

• Interactive Dashboard Views:

o An Executive ESG Scorecard with top-line KPIs for board-level review.

o A Carbon Footprint Deep Dive page with visuals that allow users to drill down into

emissions by scope (1, 2, & 3), region, business unit, and activity.

o A Reduction Initiative Modeler page using What-If Parameters, allowing the CSO to

simulate the impact of projects like "electrifying 10% of the fleet" on the overall carbon

footprint.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 61 of 75

Appendix A: A Framework for Architectural Problem-Solving
Every complex data project can seem daunting. The key to success is to replace uncertainty with a

structured, repeatable process. This appendix provides a comprehensive framework that you can apply to

any case study in this book, equipping you with both a step-by-step method and the architectural principles

needed to move from a complex problem to a well-designed solution.

Part 1: The 5-Step Method

Follow these steps to deconstruct any challenge, structure your thinking, and design a robust solution.

1. Deconstruct the Ask Before touching any technology, deeply understand the business problem. Ask

yourself: What is the core pain point? What does a successful outcome look like for the business?.

2. Identify Key Constraints Every real-world project has limitations that will fundamentally shape your

design. Look for constraints related to:

• Cost: Is there a strict budget?

• Performance: Are there specific SLAs, like data must be available by 8 AM daily?

• Security: Are there compliance requirements like GDPR or rules for handling sensitive data?

• Technology: Does the company have a preferred technology stack or legacy systems?

3. Draft a High-Level Architecture Sketch the end-to-end flow of the solution. Focus on the major

components and how they connect: Where does data come from? Where does it land? What are the

major processing stages? How is it delivered?.

4. Select & Justify Technologies With your architecture sketch in hand, select the primary service for

each component and write a brief justification for each choice.

5. Define Success (KPIs) Define clear, measurable Key Performance Indicators (KPIs) to quantify the

success of your project and the tangible value it provides. Examples include reducing pipeline execution

time or improving model accuracy.

Part 2: The Architectural Toolkit

To effectively execute steps 3 and 4 of the method, professional architects use a toolkit of established

principles and patterns.

Core Architectural Principles

• Scalability & Elasticity: Your solution must handle future growth by scaling compute and storage

resources up or down based on demand.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 62 of 75

• Security & Governance: Data must be secure, trusted, and compliant from the ground up by

implementing centralized controls for data access, quality, and lineage.

• Reliability & Automation (DevOps): Modern platforms must be reliable and minimize manual

intervention, which is achieved by implementing full CI/CD pipelines to automate testing and

deployment.

Common Data Architecture Patterns

• The Modern Data Lakehouse (Bronze/Silver/Gold): This dominant pattern combines a data lake's

scalability with a data warehouse's transactional features, refining data through raw (Bronze),

cleansed (Silver), and aggregated (Gold) layers.

• Streaming vs. Batch Architecture: Data can be processed in discrete, scheduled batches (e.g.,

nightly) or as a continuous, real-time stream.

• Incremental Loading Frameworks: Instead of wastefully reprocessing all data, modern pipelines

process only new or changed files, saving significant cost and time

The Trade-Off Decision Matrix

For every major decision, use a matrix like the one below to clarify your thinking. As the casebook states,

"There are no fixed answers - only better or weaker design choices based on trade-offs". Formally

documenting your trade-offs is a hallmark of a senior data professional.

Template:

Design Choice / Option Pros / Benefits Cons / Risks / Costs Key Considerations

Option A: List the primary advantages. List the primary

disadvantages, risks, or costs.

Cost, Performance, Scalability,

Security, Complexity

Option B: List the primary advantages. List the primary

disadvantages, risks, or costs.

Cost, Performance, Scalability,

Security, Complexity

Justification for Final

Decision:

Write a concise summary

explaining why you chose one

option over the other,

referencing the specific

business context of the case.

Framework in Action (Mini-Case Example)

Here is how to apply the 5-step method to a simple scenario.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 63 of 75

• The Challenge: A small marketing agency needs a daily automated process to copy a new CSV file of

leads from a partner's SFTP server into an Azure SQL Database table for their sales team.

1. Deconstruct the Ask - The problem is that lead data delivery is manual, slow, and error-prone. The

goal is to automate the daily ingestion of a lead CSV file into a central database.

2. Identify Key Constraints - It must be low-cost, data must be loaded by 9 AM, credentials must be

stored securely, and the destination must be Azure SQL Database.

3. Draft a High-Level Architecture - (Source SFTP) -> [Secure Data Transfer Service] -> (Destination

Azure SQL DB). An automated, time-based trigger will initiate the process daily.

4. Select & Justify Technologies - Azure Data Factory (ADF) is chosen for data movement. The

justification is that it's a managed, low-code service, making it cost-effective for simple copy tasks. It

has built-in schedule triggers, native connectors for SFTP and Azure SQL, and credentials can be

stored securely in Azure Key Vault.

5. Define Success (KPIs) - The pipeline must have >99% successful runs, data must be available by

8:00 AM daily, and 100% of manual effort must be eliminated.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 64 of 75

Appendix B: Glossary of Terms, Metrics & Concepts

This appendix provides quick-reference definitions for key technical terms and a "map" showing how core

concepts evolve across the case studies.

Part 1: Key Technologies & Concepts

• Azure Data Factory (ADF): A cloud-based data integration service used to orchestrate and

automate data movement and transformation workflows (ETL/ELT).

• Azure Databricks: A high-performance analytics platform built on Apache Spark, used for large-

scale data engineering, collaborative data science, and machine learning.

• Azure Database Migration Service (DMS): A managed service designed to enable seamless

migrations from multiple database sources to Azure data platforms with minimal downtime.

• Azure SQL Managed Instance (SQL MI): A fully managed PaaS (Platform-as-a-Service) offering of

SQL Server, providing near-100% compatibility with on-premise SQL Server for modernization

projects.

• CI/CD (Continuous Integration/Continuous Deployment): The DevOps practice of automating

the building, testing, and deployment of code changes to ensure reliability and operational

excellence.

• Delta Lake: An open-source storage layer that brings ACID transactions, scalability, and

performance to data lakes, forming the foundation of a Lakehouse architecture.

• ETL / ELT (Extract, Transform, Load / Extract, Load, Transform): Two common patterns for data

integration. ETL transforms data before loading it into a target system, while ELT loads raw data into

the target (e.g., a data lakehouse) and transforms it using the target system's power.

• GitHub Actions: A CI/CD platform integrated within GitHub used to automate software workflows,

including building, testing, and deploying applications.

• Power BI / DAX: A business intelligence tool for creating interactive reports and dashboards. DAX

(Data Analysis Expressions) is the formula language used to create custom calculations in Power BI.

• PySpark: A Python API for Apache Spark that allows you to harness the power of distributed

computing using the Python language. It is used extensively for data transformation and machine

learning at scale.

• Recursive CTE (Common Table Expression): An advanced SQL feature that allows a query to

reference itself to traverse hierarchical or graph-like data structures, such as referral networks or

organizational charts.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 65 of 75

• Self-Hosted Integration Runtime (SHIR): A secure agent that is installed on-premise to allow

Azure Data Factory to access and process data from private, on-premise networks.

• Slowly Changing Dimensions (SCD): A data modeling technique used in data warehouses to

manage and track changes to dimensional data over time (e.g., tracking a customer's address

changes).

• Structured Streaming: The high-level, fault-tolerant, and scalable stream processing engine in

Apache Spark, used for building near real-time applications.

• Unity Catalog: A unified governance solution for data and AI assets within the Databricks

Lakehouse, providing fine-grained access control, a centralized data catalog, and data lineage.

Part 2: Common Metrics & KPIs

Use this cheat sheet as a quick reference for the Key Performance Indicators (KPIs) that measure the success

and efficiency of a data platform. Quantifying your goals with these metrics is critical for making informed

design trade-offs.

Performance & Speed Metrics

These metrics measure how fast your system operates.

• Latency: The time delay between a request and a response.

o In Context: Low latency is critical for real-time systems like the IoT platform in Case F4,

where decisions must be made in seconds. For batch pipelines like in Case F1, higher latency

is often an acceptable trade-off for lower cost.

• Throughput: The amount of data processed over a period (e.g., records per second or GB per hour).

o In Context: High throughput is essential for streaming architectures (Case F4) that must

handle massive, continuous data volumes without falling behind.

• Pipeline Execution Time: The total time a data pipeline takes to complete its run.

o In Context: A primary goal for the OmniLogistics project (Case F1) was to reduce this metric

to ensure data was available for business decisions faster.

• Query Execution Time: The time it takes for an end-user's analytical query to return results.

o In Context: For the financial analysts in Case F3, reducing query time from hours to minutes

(or seconds) was a major driver for modernizing the data warehouse.

Cost Metrics

These metrics measure the financial efficiency of your solution.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 66 of 75

• Storage Cost: The cost to store data in the cloud (e.g., in ADLS Gen2), typically measured in dollars

per terabyte per month ($/TB/month).

o In Context: The archival strategy in Case F1 directly addresses this by moving processed

files to cheaper storage tiers.

• Compute Cost: The cost of the virtual resources used for processing data (e.g., Databricks clusters,

ADF integration runtimes), measured in dollars per hour ($/hour).

o In Context: Using autoscaling and spot instances, as in Case F4, is a key strategy to

minimize compute cost by paying only for the resources you use.

• Total Cost of Ownership (TCO): A holistic metric that includes cloud service bills plus operational

costs like staff time for maintenance, licensing, and support.

o In Context: Migrating from on-premise to the cloud (Case F3, F5) often aims to reduce TCO

by eliminating hardware maintenance and manual overhead.

Reliability & Quality Metrics

These metrics measure the stability and trustworthiness of your platform.

• Uptime / Availability: The percentage of time a system is operational and available to users, often

expressed as a number of "nines" (e.g., 99.9% is "three nines" availability).

o In Context: For a 24/7 e-commerce platform like StyleSpire (Case F5), maximizing uptime is

a critical, non-negotiable business requirement.

• Data Quality Score: The percentage of records in a dataset that are accurate, complete, and valid.

o In Context: The solutions for FusionPharma (F2) and FinanceCo Global (F3) involve steps to

identify, quarantine, or remediate bad data to improve this score.

• Mean Time To Recovery (MTTR): The average time it takes to recover from a pipeline or system

failure and restore normal operations.

o In-Context: A robust error-handling and notification framework (Case F1) is designed to

reduce MTTR by enabling engineers to quickly diagnose and fix issues.

Machine Learning Model Metrics

These metrics measure the predictive performance of AI models.

• Accuracy / F1-Score: Used for classification models. Accuracy is the percentage of correct

predictions. F1-Score is the harmonic mean of Precision and Recall, providing a better measure for

imbalanced datasets.

o In Context: These are the primary KPIs for the customer ticket classification model in Case

M2.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 67 of 75

• Root Mean Squared Error (RMSE) / Mean Absolute Error (MAE): Used for regression models.

Both measure the average magnitude of error between a model's predicted values and the actual

values.

o In Context: These metrics are used to evaluate the performance of the demand forecasting

(M1) and personality prediction (M3) models.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 68 of 75

Appendix C: Concept Progression Map

This map illustrates how key data engineering themes evolve from foundational to expert-level applications

throughout the casebook.

Theme: Data Ingestion & Processing

• Foundational Batch: Building a robust, incremental loading framework for structured files. (see

Case F1)

• Complex Batch: Harmonizing diverse and nested file formats (JSON, XML) using visual data flows.

(see Case F2)

• Real-Time Streaming: Ingesting and processing high-velocity IoT data with minimal latency. (see

Case F4)

Theme: Data Warehousing & Modeling

• Foundational Design: Architecting a new operational database from scratch with robust integrity

constraints (stored procedures, triggers). (see Case S1)

• Advanced Modernization: Migrating a legacy on-premise data warehouse to a modern Lakehouse

architecture, implementing SCDs and performance tuning. (see Case F3)

• High-Stakes Migration: Executing a near-zero downtime migration of a live transactional database

to a PaaS solution. (see Case F5)

Theme: Automation & DevOps

• Foundational CI/CD: Automating the deployment of ADF pipelines across Dev, Test, and Prod

environments using GitHub Actions. (see Case F1)

• Advanced CI/CD: Implementing a full CI/CD pipeline for Databricks notebooks, including

automated unit testing for PySpark code. (see Case F3)

Theme: Governance & Security

• Platform Governance: Implementing a centralized governance and security fabric for a data

lakehouse using Unity Catalog. (see Case F3)

• Programmatic Governance: Engineering a precise, auditable PySpark pipeline to automate GDPR

data erasure requests at scale. (see Case P2)

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 69 of 75

Theme: Advanced Analytics & AI

• Foundational Analytics: Answering a wide range of business questions using advanced SQL and

window functions. (see Case S2)

• Advanced SQL: Performing complex customer segmentation (RFM) and network analysis using

recursive CTEs and PIVOT. (see Case S3)

• End-to-End AI: Building, training, and evaluating predictive models for forecasting (M1), NLP

classification (M2), and multi-output regression (M3).

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 70 of 75

Appendix D: Common Pitfalls & Anti-Patterns

Recognizing what not to do is as important as knowing what to do. This section highlights common

mistakes in data architecture. Many of the case studies in this book show solutions to problems caused by

these very anti-patterns.

1. The Monolithic Pipeline

• What it is: A single, massive pipeline responsible for ingesting and processing many different data

sources. A failure in one small part (e.g., one malformed file) causes the entire process to fail,

requiring complex and time-consuming manual restarts.

• Where you see this: This fragility is a key challenge at OmniLogistics Inc., where a single bad file

could halt the entire daily ingestion.

2. The Data Swamp (Instead of a Data Lake)

• What it is: Dumping raw data into a data lake with no schema enforcement, data validation, or

governance. This leads to inconsistent and untrustworthy data that is nearly impossible for analysts

to use effectively.

• Where you see this: AeroSense initially struggled with this, as a lack of schema enforcement at the

ingestion layer led to data quality issues in their analytical stores.

3. The Manual Promotion

• What it is: Manually recreating or copying code and configurations between development, test, and

production environments. This process is slow, error-prone, and lacks version control, often leading

to production failures.

• Where you see this: This was a critical problem for both OmniLogistics and FinanceCo Global,

preventing reliable and consistent deployments.

4. The Over-Provisioned Cost Sink

• What it is: Using static, over-provisioned resources (like Virtual Machines or clusters) that run 24/7

regardless of the actual workload. This leads to runaway cloud costs that are not proportional to the

work being done.

• Where you see this: The initial architecture at AeroSense consisted of over-provisioned, static VMs,

which led to spiraling and inefficient cloud costs.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 71 of 75

5. The Secret in the Code

• What it is: Hardcoding sensitive information like passwords, API keys, or connection strings directly

in notebooks, scripts, or configuration files. This is a major security vulnerability.

• Where you see this: While not explicitly stated as a problem, the solutions in cases like F3

emphasize using Azure Key Vault-backed secret scopes to prevent this anti-pattern and handle

credentials securely.

6. The "Boil the Ocean" Pipeline

• What it is: An inefficient pipeline that re-processes an entire dataset from scratch every time it runs,

instead of intelligently processing only new or updated data. This leads to excessive costs and long

execution times.

• Where you see this: The initial pipeline at OmniLogistics Inc. attempts to re-ingest all files in its

source folder daily, "regardless of whether they are new or have been previously processed".

7. The Governance "Wild West"

• What it is: An environment with no centralized data catalog, inconsistent access controls, and no

automated data lineage tracking. This makes data untrustworthy and poses a significant risk for

regulatory compliance and security.

• Where you see this: FinanceCo Global suffered from "Fragmented Governance" where data access

controls were inconsistently applied and there was no centralized catalog or lineage, making it

difficult to manage sensitive PII data.

8. The Duct Tape & Scripts Architecture

• What it is: Relying on a collection of disconnected, individual scripts, often running on separate

VMs, instead of using an integrated orchestration framework. This approach is brittle, difficult to

maintain, and doesn't scale.

• Where you see this: The data processing at FusionPharma initially relied on a "patchwork of Python

scripts" and basic copy activities, which created significant operational overhead.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 72 of 75

9. The Data Silo Maze

• What it is: An organizational anti-pattern where different teams use separate systems to track

related business activities. This results in fragmented data with different schemas, preventing a

unified view of performance.

• Where you see this: At Couture Collective, the online and in-store teams functioned in silos with

separate systems, leading to "fragmented data with different schemas and naming conventions" .

10. The Brittle Prototype

• What it is: A system designed and built quickly for an initial launch that cannot handle the demands

of increased data volume and query complexity. What worked for a prototype becomes a major

bottleneck at scale.

• Where you see this: The data infrastructure at CityHop, "built quickly for launch," became a major

bottleneck that could not provide timely insights as the company grew.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 73 of 75

Appendix E: About This Portfolio

Professional Philosophy & Approach

My approach to data engineering is founded on a single, core principle: technology is a means to achieve a

specific business outcome, not an end in itself. While I possess a deep passion for the technical challenges

of building elegant and robust systems, my work is always guided by a focus on delivering measurable and

meaningful value to the organization. This philosophy is built on three pillars:

• Value-Driven Architecture: I believe in designing solutions that directly address a company's

strategic imperatives. This means moving beyond technical checklists to a pragmatic approach that

balances performance, cost, scalability, and security to architect a platform that not only solves the

immediate problem but also serves as a resilient, long-term asset.

• Engineering for Trust: Data is only valuable if it is trusted. My methodology emphasizes building

data quality, governance, and security into the foundation of every project by implementing detailed

audit logging, automated data validation, and clear access control frameworks.

• Partnership and Communication: The most successful data projects are born from a true

partnership between technical and business teams. I excel at translating ambiguous business needs

into precise technical requirements and communicating complex results back to stakeholders in a

clear and accessible manner.

A Note on This Portfolio's Creation

The technical knowledge and strategic insights contained within this casebook are the product of years of

dedicated, hands-on professional experience. Each case represents a recurring, high-value business

problem that I have encountered and solved. The cases themselves have been carefully crafted as

representative archetypes to demonstrate key patterns while rigorously protecting the confidentiality of

former employers and clients. All company names are illustrative, and each scenario is a synthesized

composite.

To accelerate the creation of this portfolio and elevate its professional polish, I engaged Google's Gemini as

an AI-powered editorial partner. This collaboration was instrumental in structuring the overarching narrative

and refining the language for clarity. This modern, hybrid workflow of deep human experience and AI-

assisted documentation enabled the efficient production of this high-quality, professional portfolio.

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 74 of 75

Evolution of This Casebook

This portfolio has undergone a deliberate, multi-stage evolution, with each major version representing a

deeper scope and a more refined presentation of capabilities.

• Version 1.1: Foundational Azure Data Factory Concepts The initial version, the Azure Data Factory

Casebook - Case Studies v1.1, was a focused collection of three case studies. It was designed to

demonstrate core ADF competencies in incremental data ingestion, management of schema

evolution, and real-time event stream processing.

• Versions 1.3 & 1.4: Expansion into Azure Databricks & Advanced Topics Subsequent versions

expanded the scope to integrate Azure Databricks, creating the Azure Data Factory & Databricks

Casebook. These iterations introduced more advanced and diverse topics, including CI/CD

automation, modern data warehouse migration, and architecture for real-time loT and analytics

platforms.

• Version 1.5: Bridging Engineering with Advanced Analytics This version marked a key strategic

expansion by incorporating the first purely analytical case study, "Engineering a Data-Driven Future

at CityHop". This addition was pivotal, bridging the gap between foundational platform engineering

and the application of deep analytical querying with advanced SQL to solve critical business

problems. By tackling 22 distinct business questions, this version began the transition from an

engineering-focused collection to a more comprehensive, full-stack portfolio.

• Version 2.0: The Full-Stack Portfolio This version marked a significant strategic pivot, transforming

the document into The Azure Data Engineering & Analytics Casebook. The portfolio was expanded to

a comprehensive twelve case studies, structured for the first time into a four-part narrative. This

version established the full-stack journey-from foundational cloud engineering to advanced

machine learning-that forms the core of the document's structure.

• Version 2.1: Professional and Narrative Refinement This version represented a comprehensive

refinement process to elevate the document from a technical collection to a sophisticated,

professional portfolio. Key enhancements included the addition of strategic framing like the

Executive Summary and Professional Philosophy, and the expansion of content with a thirteenth

case study on Power BI (Case Study S4) focusing on a high-impact ESG dashboard to demonstrate

strategic business intelligence skills.

• Version 2.2: Deepening Elite Engineering Expertise The latest evolution of the casebook further

solidifies Part 3: Elite PySpark Engineering & Governance section, expanding the portfolio to a total

of fifteen case studies. This version introduces two new advanced data engineering scenarios: one

focused on building a sophisticated "trending now" algorithm for a digital media platform, and

another on solving the complex omnichannel analytics challenge for a fashion retailer. These

The Azure Data Engineering & Analytics Casebook Sanjay Chandra

Page 75 of 75

additions deepen the demonstration of building complex, non-ML data products that require first-

principles thinking to drive direct business value.

• Version 2.3: Strategic Narrative and Structural Overhaul This version represented a

comprehensive strategic overhaul focused on optimizing the portfolio's narrative and professional

presentation. The most significant change is the re-architecting of the casebook's primary structure

to a Foundations → PySpark → ML → SQL/BI flow, mirroring the lifecycle of a modern data product

from infrastructure to insight. To enhance discoverability, this version introduces two key

navigational aids: a Challenge Index page allowing readers to find cases by domain or technology,

and a master Challenge Catalog providing a scannable overview of all fifteen projects. This version

marks the most deliberately structured and reader-centric iteration of the portfolio.

• Version 2.4: Enhanced Professional Presentation The current version enhances the document's

professional appearance by incorporating a cover page. The main update involves adding this title

page to refine the casebook's overall structure and presentation.

• Version 2.6: Reader-Centric Structural Refinement (Current Version) This version represents a

comprehensive structural overhaul focused on improving the portfolio's logical flow and creating a

more intuitive reader experience. The key enhancements were:

o A Unified Introduction: The Executive Summary, Introduction, and How to Use This

Casebook sections were consolidated into a single, cohesive Introduction. This creates a

stronger, more direct opening that immediately frames the portfolio's purpose and guides

the reader.

o A Centralized Navigator: All navigational tools-the Challenge Summary Table, Challenge

Index, and Index by Pattern & Concept-were merged into a single Case Study Navigator. This

gives the reader one central place to find and explore case studies relevant to their interests.

o Re-architected Appendices: The appendices were restructured for better usability. The

"how-to" guides were merged into a single A Framework for Architectural Problem-Solving,

and the glossaries were combined into Glossary of Terms, Metrics & Concepts to create a

unified reference.

o Streamlined Conclusion: All concluding meta-commentary was streamlined by combining

Professional Philosophy, A Note on This Portfolio's Creation, and a condensed Evolution of

This Casebook into a single, final About This Portfolio appendix.

